scholarly journals Challenging a Paradigm: the Role of DNA Homology in Tyrosine Recombinase Reactions

2009 ◽  
Vol 73 (2) ◽  
pp. 300-309 ◽  
Author(s):  
Lara Rajeev ◽  
Karolina Malanowska ◽  
Jeffrey F. Gardner

SUMMARY A classical feature of the tyrosine recombinase family of proteins catalyzing site-specific recombination, as exemplified by the phage lambda integrase and the Cre and Flp recombinases, is the ability to recombine substrates sharing very limited DNA sequence identity. Decades of research have established the importance of this short stretch of identity within the core regions of the substrates. Since then, several new enzymes that challenge this paradigm have been discovered and require the role of sequence identity in site-specific recombination to be reconsidered. The integrases of the conjugative transposons such as Tn916, Tn1545, and CTnDOT recombine substrates with heterologous core sequences. The integrase of the mobilizable transposon NBU1 performs recombination more efficiently with certain core mismatches. The integration of CTX phage and capture of gene cassettes by integrons also occur by altered mechanisms. In these systems, recombination occurs between mismatched sequences by a single strand exchange. In this review, we discuss literature that led to the formulation of the current strand-swapping isomerization model for tyrosine recombinases. The review then focuses on recent developments on the recombinases that challenged the paradigm that was derived from the studies of early systems.

2004 ◽  
Vol 48 (3) ◽  
pp. 1028-1031 ◽  
Author(s):  
Sally A. Turner ◽  
Shelley N. Luck ◽  
Harry Sakellaris ◽  
Kumar Rajakumar ◽  
Ben Adler

ABSTRACT The Shigella resistance locus (SRL) pathogenicity island (PAI) in Shigella spp. mediates resistance to streptomycin, ampicillin, chloramphenicol, and tetracycline. It can be excised from the chromosome via site-specific recombination mediated by the P4-related int gene. Here, we show that SRL PAI attP is capable of RecA-independent, site-specific, int-mediated integration into two bacterial tRNA attB sites.


1980 ◽  
Vol 138 (3) ◽  
pp. 503-512 ◽  
Author(s):  
Susan Gottesman ◽  
Ken Abremski

2002 ◽  
Vol 184 (1) ◽  
pp. 177-182 ◽  
Author(s):  
Szabolcs Semsey ◽  
Béla Blaha ◽  
Krisztián Köles ◽  
László Orosz ◽  
Péter P. Papp

ABSTRACT The integrase protein of the Rhizobium meliloti 41 phage 16-3 has been classified as a member of the Int family of tyrosine recombinases. The site-specific recombination system of the phage belongs to the group in which the target site of integration (attB) is within a tRNA gene. Since tRNA genes are conserved, we expected that the target sequence of the site-specific recombination system of the 16-3 phage could occur in other species and integration could take place if the required putative host factors were also provided by the targeted cells. Here we report that a plasmid (pSEM167) carrying the attP element and the integrase gene (int) of the phage can integrate into the chromosomes of R. meliloti 1021 and eight other species. In all cases integration occurred at so-far-unidentified, putative proline tRNA (CGG) genes, indicating the possibility of their common origin. Multiple alignment of the sequences suggested that the location of the att core was different from that expected previously. The minimal attB was identified as a 23-bp sequence corresponding to the anticodon arm of the tRNA.


1979 ◽  
Vol 43 (0) ◽  
pp. 1121-1126 ◽  
Author(s):  
H. I. Miller ◽  
A. Kikuchi ◽  
H. A. Nash ◽  
R. A. Weisberg ◽  
D. I. Friedman

1993 ◽  
Vol 58 (0) ◽  
pp. 505-513 ◽  
Author(s):  
P. Merker ◽  
G. Muskhelishvili ◽  
A. Deufel ◽  
K. Rusch ◽  
R. Kahmann

1983 ◽  
Vol 170 (2) ◽  
pp. 319-342 ◽  
Author(s):  
Robert A. Weisberg ◽  
Lynn W. Enquist ◽  
Carl Foeller ◽  
Arthur Landy

ISRN Virology ◽  
2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Pandrangi Anupama

The core of BTV is organized into three concentric structures of which VP7 protein forms the major core protein. The subcore consists of VP3 protein and the innermost part of the core is made of three minor proteins: VP1, VP4, and VP6. Earlier it was reported that core-like particles (CLPs) composed of viral VP7 and VP3 proteins were produced in order to study role of VP7 protein in intermolecular interactions in the BTV assembly process. Site specific mutational studies revealed that substitution of the single lysine residue of VP7 (Lys-255) by leucine abrogated CLP formation, indicating a critical role for this lysine. In the present study, homology modeling, mutagenesis, and docking studies were carried out in order to design potent leads in modulation of VP7 protein in abrogating CLP formation.


Sign in / Sign up

Export Citation Format

Share Document