scholarly journals Trehalose Phosphate Synthase Complex-Mediated Regulation of Trehalose 6-Phosphate Homeostasis Is Critical for Development and Pathogenesis in Magnaporthe oryzae

mSystems ◽  
2021 ◽  
Author(s):  
Xin Chen ◽  
Yakubu Saddeeq Abubakar ◽  
Chengdong Yang ◽  
Xiaxia Wang ◽  
Pengfei Miao ◽  
...  

M. oryzae , the causative agent of the rice blast disease, threaten rice production worldwide. Our results revealed that T6P accumulation, caused by the disruption of MoTps2, has toxic effects on fugal development and pathogenesis in M. oryzae .

Author(s):  
G. O. Agbowuro ◽  
M. S. Afolabi ◽  
E. F. Olamiriki ◽  
S. O. Awoyemi

Rice blast disease is one of the major constraints to rice production, threatening food security globally. Rice grain production losses due to the disease leads economic losses to the farmers, and to an increase in global rice price as a result of the supply that is far below the consumer demand. The losses from the disease annually was estimated to feed over 60 million individual. The disease has been studied comprehensively by researchers due to the importance attached to rice and its vast spread and destructiveness across the globe. A good understanding of the pathogen causing the disease, its life cycle and development, epidemiology, symptoms, management strategy will offer a good insight into the disease incidence and give an appropriate and effective decision-making in its management. Different control measures have been adopted managing the disease, including the use of resistant varieties. Integrated disease management strategies coupled with good agronomy practices are required for successful control of rice blast for food security. This review, therefore, examined the fundamentals of rice blast disease (Magnaporthe oryzae) and offered strategies to minimize the disease activities to ensure proper production and increase the supply of rice grains.


2020 ◽  
Author(s):  
Jessie Fernandez ◽  
Victor Lopez ◽  
Lisa Kinch ◽  
Mariel A. Pfeifer ◽  
Hillery Gray ◽  
...  

ABSTRACTRice blast disease caused by Magnaporthe oryzae is a devastating disease of cultivated rice worldwide. Infections by this fungus lead to a significant reduction in rice yields and threats to food security. To gain better insight into growth and cell death in M. oryzae during infection, we characterized two predicted M. oryzae metacaspase proteins, MoMca1 and MoMca2. These proteins appear to be functionally redundant and are able to complement the yeast Yca1 homologue. Biochemical analysis revealed that M. oryzae metacaspases exhibited Ca2+ dependent caspase activity in vitro. Deletion of both MoMca1 and MoMca2 in M. oryzae resulted in reduced sporulation, delay in conidial germination and attenuation of disease severity. In addition, the double ΔMomca1mca2 mutant strain showed increased radial growth in the presence of oxidative stress. Interestingly, the ΔMomca1mca2 strain showed an increase accumulation of insoluble aggregates compared to the wild-type strain during vegetative growth. Our findings suggest that MoMca1 and MoMca2 promote the clearance of insoluble aggregates in M. oryzae, demonstrating the important role these metacaspases have in fungal protein homeostasis. Furthermore, these metacaspase proteins may play additional roles, like in regulating stress responses, that would help maintain the fitness of fungal cells required for host infection.IMPORTANCEMagnaporthe oryzae causes rice blast disease that threatens global food security by resulting in the severe loss of rice production every year. A tightly regulated life cycle allows M. oryzae to disarm the host plant immune system during its biotrophic stage before triggering plant cell death in its necrotrophic stage. The ways M. oryzae navigates its complex life cycle remains unclear. This work characterizes two metacaspase proteins with peptidase activity in M. oryzae that are shown to be involved in the regulation of fungal growth and development prior to infection by potentially helping maintain fungal fitness. This study provides new insight into the role of metacaspase proteins in filamentous fungi by illustrating the delays in M. oryzae morphogenesis in the absence of these proteins. Understanding the mechanisms by which M. oryzae morphology and development promote its devastating pathogenicity may lead to the emergence of proper methods for disease control.


Author(s):  
Ganesan Prakash ◽  
Asharani Patel ◽  
Ish Prakash ◽  
Kuleshwar Prasad Sahu ◽  
Rajashekara Hosahatti ◽  
...  

2018 ◽  
Vol 55 (3) ◽  
pp. 467 ◽  
Author(s):  
Chinmayee Sahu ◽  
Manoj Kumar Yadav ◽  
Gayatree Panda ◽  
S Aravindan ◽  
Ngangkham Umakanta ◽  
...  

2012 ◽  
Vol 24 (1) ◽  
pp. 322-335 ◽  
Author(s):  
Thomas A. Mentlak ◽  
Anja Kombrink ◽  
Tomonori Shinya ◽  
Lauren S. Ryder ◽  
Ippei Otomo ◽  
...  

Molecules ◽  
2017 ◽  
Vol 22 (10) ◽  
pp. 1799 ◽  
Author(s):  
Jiaoyu Wang ◽  
Ling Li ◽  
Yeshi Yin ◽  
Zhuokan Gu ◽  
Rongyao Chai ◽  
...  

Plant Disease ◽  
2021 ◽  
Author(s):  
Samuel K Mutiga ◽  
Felix Rotich ◽  
Vincent M Were ◽  
John Kimani ◽  
David Thuranira Mwongera ◽  
...  

Rice is a key food security crop in Africa. The importance of rice has led to increasing country-specific, regional and multinational efforts to develop germplasm and policy initiatives to boost production for a more food secure continent. Currently, this critically important cereal crop is predominantly cultivated by small-scale farmers under sub-optimal conditions in most parts of sub-Saharan Africa (SSA). Rice blast disease, caused by the fungus Magnaporthe oryzae, represents one of the major biotic constraints to rice production under small-scale farming systems of Africa, and developing durable disease resistance is therefore of critical importance. In this review, we provide an overview of the major advances by a multinational collaborative research effort to enhance sustainable rice production across SSA and how it is affected by advances in regional policy. As part of the multinational effort, we highlight the importance of joint international partnerships in tackling multiple crop production constraints through integrated research and outreach programs. More specifically, we highlight recent progress in establishing international networks for rice blast disease surveillance, farmer engagement, monitoring pathogen virulence spectra, and the establishment of regionally-based blast resistance breeding programs. To develop blast resistant, high yielding rice varieties for Africa, we have established a breeding pipeline that utilizes real-time data of pathogen diversity and virulence spectra, to identify major and minor blast resistance genes for introgression into locally adapted rice cultivars. In addition, the project has developed a package to support sustainable rice production through regular stakeholder engagement, training of agricultural extension officers, and establishment of plant clinics.


mBio ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jessie Fernandez ◽  
Victor Lopez ◽  
Lisa Kinch ◽  
Mariel A. Pfeifer ◽  
Hillery Gray ◽  
...  

ABSTRACT Rice blast disease caused by Magnaporthe oryzae is a devastating disease of cultivated rice worldwide. Infections by this fungus lead to a significant reduction in rice yields and threats to food security. To gain better insight into growth and cell death in M. oryzae during infection, we characterized two predicted M. oryzae metacaspase proteins, MoMca1 and MoMca2. These proteins appear to be functionally redundant and can complement the yeast Yca1 homologue. Biochemical analysis revealed that M. oryzae metacaspases exhibited Ca2+-dependent caspase activity in vitro. Deletion of both MoMca1 and MoMca2 in M. oryzae resulted in reduced sporulation, delay in conidial germination, and attenuation of disease severity. In addition, the double ΔMomca1mca2 mutant strain showed increased radial growth in the presence of oxidative stress. Interestingly, the ΔMomca1mca2 strain showed an increased accumulation of insoluble aggregates compared to the wild-type strain during vegetative growth. Our findings suggest that MoMca1 and MoMca2 promote the clearance of insoluble aggregates in M. oryzae, demonstrating the important role these metacaspases have in fungal protein homeostasis. Furthermore, these metacaspase proteins may play additional roles, like in regulating stress responses, that would help maintain the fitness of fungal cells required for host infection. IMPORTANCE Magnaporthe oryzae causes rice blast disease that threatens global food security by resulting in the severe loss of rice production every year. A tightly regulated life cycle allows M. oryzae to disarm the host plant immune system during its biotrophic stage before triggering plant cell death in its necrotrophic stage. The ways M. oryzae navigates its complex life cycle remain unclear. This work characterizes two metacaspase proteins with peptidase activity in M. oryzae that are shown to be involved in the regulation of fungal growth and development prior to infection by potentially helping maintain fungal fitness. This study provides new insights into the role of metacaspase proteins in filamentous fungi by illustrating the delays in M. oryzae morphogenesis in the absence of these proteins. Understanding the mechanisms by which M. oryzae morphology and development promote its devastating pathogenicity may lead to the emergence of proper methods for disease control.


Sign in / Sign up

Export Citation Format

Share Document