scholarly journals The Infectious Dose Shapes Vibrio cholerae Within-Host Dynamics

mSystems ◽  
2021 ◽  
Author(s):  
Aaron Nicholas Gillman ◽  
Anel Mahmutovic ◽  
Pia Abel zur Wiesch ◽  
Sören Abel

Determining the rates of bacterial migration, replication, and death during infection is important for understanding how infections progress. Separately measuring these rates is often difficult in systems where multiple processes happen simultaneously.

2008 ◽  
Vol 76 (11) ◽  
pp. 5266-5273 ◽  
Author(s):  
M. Shamim Hasan Zahid ◽  
S. M. Nashir Udden ◽  
A. S. G. Faruque ◽  
Stephen B. Calderwood ◽  
John J. Mekalanos ◽  
...  

ABSTRACT Seasonal epidemics of cholera in Bangladesh are self-limited in nature, presumably due to phage predation of the causative Vibrio cholerae during the late stage of an epidemic, when cholera patients excrete large quantities of phage in their stools. To further understand the mechanisms involved, we studied the effect of phage on the infectivity and survival of V. cholerae shed in stools. The 50% infectious dose of stool vibrios in infant mice was ∼10-fold higher when the stools contained a phage (1.8 × 103 to 5.7 × 106 PFU/ml) than when stools did not contain a detectable phage. In competition assays in mice using a reference strain and phage-negative cholera stools, the infectivity of biofilm-like clumped cells was 3.9- to 115.9-fold higher than that of the corresponding planktonic cells. However, the difference in infectivity of these two cell populations in phage-positive stools was significantly less than that in phage-negative stools (P = 0.0006). Coculture of a phage and V. cholerae or dilutions of phage-positive cholera stools in nutrient medium, but not in environmental water, caused rapid emergence of phage-resistant derivatives of the bacteria, and these derivatives lost their O1 antigen. In cholera stools and in intestinal contents of mice prechallenged with a mixture of V. cholerae and phage, the bacteria remained completely phage susceptible, suggesting that the intestinal environment did not favor the emergence of phage-resistant derivatives that lost the O1 antigen. Our results indicate that phages lead to the collapse of epidemics by modulating the required infectious dose of the bacteria. Furthermore, the dominance of phage-resistant variants due to the bactericidal selective mechanism occurs rarely in natural settings, and the emerging variants are thus unable to sustain the ongoing epidemic.


2010 ◽  
Vol 78 (8) ◽  
pp. 3560-3569 ◽  
Author(s):  
Rita Tamayo ◽  
Bharathi Patimalla ◽  
Andrew Camilli

ABSTRACT Biofilm formation plays a multifaceted role in the life cycles of a wide variety of microorganisms. In the case of pathogenic Vibrio cholerae, biofilm formation in its native aquatic habitats is thought to aid in persistence during interepidemic seasons and to enhance infectivity upon oral ingestion. The structure of V. cholerae biofilms has been hypothesized to protect the bacteria during passage through the stomach. Here, we directly test the role of biofilm architecture in the infectivity of V. cholerae by comparing the abilities of intact biofilms, dispersed biofilms, and planktonic cells to colonize the mouse small intestine. Not only were V. cholerae biofilms better able to colonize than planktonic cells, but the structure of the biofilm was also found to be dispensable: intact and dispersed biofilms colonized equally, and both vastly out-colonized planktonic cells. The infectious dose for biofilm-derived V. cholerae was orders of magnitude lower than that of planktonic cells. This biofilm-induced hyperinfectivity may be due in part to a higher growth rate of biofilm-derived cells during infection. These results suggest that the infectious dose of naturally occurring biofilms of V. cholerae may be much lower than previously estimated using cells grown planktonically in vitro. Furthermore, this work implies the existence of factors specifically induced during growth in a biofilm that augment infection by V. cholerae.


2003 ◽  
Vol 69 (11) ◽  
pp. 6923-6931 ◽  
Author(s):  
Rosa R. Mouriño-Pérez ◽  
Alexandra Z. Worden ◽  
Farooq Azam

ABSTRACT Vibrio cholerae serotype O1 is autochthonous to estuarine and coastal waters. However, its population dynamics in such environments are not well understood. We tested the proliferation of V. cholerae N16961 during a Lingulodinium polyedrum bloom, as well as other seawater conditions. Microcosms containing 100-kDa-filtered seawater were inoculated with V. cholerae or the 0.6-μm-pore-size filterable fraction of seawater assemblages. These cultures were diluted 10-fold with fresh 100-kDa-filtered seawater every 48 h for four cycles. Growth rates ranged from 0.3 to 14.3 day−1 (4.2 day−1 ± 3.9) for V. cholerae and 0.1 to 9.7 day−1 (2.2 ± 2.8 day−1) for bacterial assemblage. Our results suggest that dissolved organic matter during intense phytoplankton blooms has the potential to support explosive growth of V. cholerae in seawater. Under the conditions tested, free-living V. cholerae was able to reach concentrations per milliliter that were up to 3 orders of magnitude higher than the known minimum infectious dose (104 cell ml−1) and remained viable under many conditions. If applicable to the complex conditions in marine ecosystems, our results suggest an important role of the growth of free-living V. cholerae in disease propagation and prevention during phytoplankton blooms.


1970 ◽  
Vol 24 (1) ◽  
pp. 38-41
Author(s):  
Taslima Taher Lina ◽  
Mohammad Ilias

The in vivo production of soluble inorganic pyrophosphatases (PPases) was investigated in two strains, namely, Vibrio cholerae EM 004 (environmental strain) and Vibrio cholerae O1 757 (ATCC strain). V. cholerae is known to contain both family I and family II PPase coding sequences. The production of family I and family II PPases were determined by measuring the enzyme activity in cell extracts. The effects of pH, temperature, salinity of the growth medium on the production of soluble PPases were studied. In case of family I PPase, V. cholerae EM 004 gave the highest specific activity at pH 9.0, with 2% NaCl + 0.011% NaF and at 37°C. The strain V. cholerae O1 757 gave the highest specific activity at pH 9.0, with media containing 0% NaCl and at 37°C. On the other hand, under all the conditions family II PPase did not give any significant specific activity, suggesting that the family II PPase was not produced in vivo in either strains of V. cholerae under different experimental conditions. Keywords: Vibrio cholerae, Pyrophosphatases (PPases), Specific activityDOI: http://dx.doi.org/10.3329/bjm.v24i1.1235 Bangladesh J Microbiol, Volume 24, Number 1, June 2007, pp 38-41


2003 ◽  
Author(s):  
Charles Thomas Parker ◽  
Dorothea Taylor ◽  
George M Garrity
Keyword(s):  

2003 ◽  
Author(s):  
Charles Thomas Parker ◽  
Dorothea Taylor ◽  
George M Garrity
Keyword(s):  

2003 ◽  
Author(s):  
Charles Thomas Parker ◽  
Dorothea Taylor ◽  
George M Garrity
Keyword(s):  

2003 ◽  
Author(s):  
Charles Thomas Parker ◽  
Dorothea Taylor ◽  
George M Garrity
Keyword(s):  

2003 ◽  
Author(s):  
Charles Thomas Parker ◽  
Dorothea Taylor ◽  
George M Garrity
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document