In vivo Production of Soluble Inorganic Pyrophosphatases in Two Strains of Vibrio cholerae

1970 ◽  
Vol 24 (1) ◽  
pp. 38-41
Author(s):  
Taslima Taher Lina ◽  
Mohammad Ilias

The in vivo production of soluble inorganic pyrophosphatases (PPases) was investigated in two strains, namely, Vibrio cholerae EM 004 (environmental strain) and Vibrio cholerae O1 757 (ATCC strain). V. cholerae is known to contain both family I and family II PPase coding sequences. The production of family I and family II PPases were determined by measuring the enzyme activity in cell extracts. The effects of pH, temperature, salinity of the growth medium on the production of soluble PPases were studied. In case of family I PPase, V. cholerae EM 004 gave the highest specific activity at pH 9.0, with 2% NaCl + 0.011% NaF and at 37°C. The strain V. cholerae O1 757 gave the highest specific activity at pH 9.0, with media containing 0% NaCl and at 37°C. On the other hand, under all the conditions family II PPase did not give any significant specific activity, suggesting that the family II PPase was not produced in vivo in either strains of V. cholerae under different experimental conditions. Keywords: Vibrio cholerae, Pyrophosphatases (PPases), Specific activityDOI: http://dx.doi.org/10.3329/bjm.v24i1.1235 Bangladesh J Microbiol, Volume 24, Number 1, June 2007, pp 38-41

1984 ◽  
Vol 4 (12) ◽  
pp. 2784-2791
Author(s):  
G Podgorski ◽  
R A Deering

Two thymidine auxotrophs of Dictyostelium discoideum were isolated which improve the efficiency of in vivo DNA-specific radiolabeling. Mutant HPS400 lacked detectable thymidylate synthetase activity, required 50 micrograms of thymidine per ml, and incorporated sixfold more [3H]thymidine into nuclear DNA than did a wild-type strain. Either dTMP or exogenously provided DNA also permitted growth of this strain. The second mutant, HPS401, was isolated from HPS400 and also lacked thymidylate synthetase activity, but required only 4 micrograms of thymidine per ml for normal growth and incorporated 55 times more thymidine label than did a control strain. Incorporation of the thymidine analog 5'-bromodeoxyuridine was also markedly increased in the mutants. Catalytic properties of the thymidylate synthetase of D. discoideum investigated in cell extracts were consistent with those observed for this enzyme in other organisms. These strains should facilitate studies of DNA replication and repair in D. discoideum which require short-term labeling, DNA of high specific activity, or elevated levels of substitution in DNA by thymidine analogs.


2021 ◽  
Author(s):  
Jue Wang ◽  
Karl Anderson ◽  
Ellen Yang ◽  
Lian He ◽  
Mary E. Lidstrom

AbstractFormate is an attractive feedstock for sustainable microbial production of fuels and chemicals, but its potential is limited by the lack of efficient assimilation pathways. The reduction of formate to formaldehyde would allow efficient downstream assimilation, but no efficient enzymes are known for this transformation. To develop a 2-step formate-reduction pathway, we screened natural variants of acyl-CoA synthetase (ACS) and acylating aldehyde dehydrogenase (ACDH) for activity on one-carbon substrates and identified active and highly expressed homologs of both enzymes. We then performed directed evolution, increasing ACDH specific activity by 2.5-fold and ACS lysate activity by 5-fold. To test for in vivo activity of our pathway, we expressed it in a methylotroph which can natively assimilate formaldehyde. Although the enzymes were active in cell extracts, we could not detect formate assimilation into biomass, indicating that further improvement will be required for formatotrophy. Our work provides a foundation for further development of a versatile pathway for formate assimilation.


1980 ◽  
Vol 26 (7) ◽  
pp. 774-777 ◽  
Author(s):  
Alan C. Wilson ◽  
Leslie R. Barran

Cell extracts of hyphae of Fusarium oxysporum f. sp. lycopersici rapidly transferred the methyl group of S-[methyl-3 H]adenosyl-L-methionine (Ado-Met) to endogenous phosphatidylethanolamine (PE). About 80% of the radioactivity incorporated into the phospholipid fraction was found in phosphatidylcholine (PC) while the rest of the radioactivity was present in the intermediates monomethylphosphatidylethanolamine (MePE) and dimethylphosphatidylethanolamine (DiMePE). The phospholipid methylating system had a pH optimum of 8.5, a Km of 30 μm for Ado-Met, and a Vmax of 10 nmol/h per milligram protein. The specific activity of the methylating system was highest in early log phase and lowest in the late log phase of growth.The activity of the cell-free methylating system was reduced by incubation at temperatures above 25 °C, and at 37 °C about 50% of the initial methylating activity remained after incubation for 15 min. In contrast, the activity of the in vivo methylation system almost doubled when the incubation temperature was raised from 25 to 37 °C.


1998 ◽  
Vol 66 (8) ◽  
pp. 3752-3757 ◽  
Author(s):  
Shah M. Faruque ◽  
Asadulghani ◽  
A. R. M. Abdul Alim ◽  
M. John Albert ◽  
K. M. Nasirul Islam ◽  
...  

ABSTRACT In toxigenic Vibrio cholerae, the CTX genetic element which carries the genes for cholera toxin (CT) is the genome of a lysogenic bacteriophage (CTXΦ). Clinical and environmental strains ofV. cholerae O1 or O139 and stools that were culture positive for cholera were analyzed to study the induction and transmission of CTXΦ. To our knowledge, this is the first report of the examination of CTXΦ in clinical materials and in naturally occurring strains. DNA probe analysis revealed that 4.25% (6 of 141) of the isolated V. cholerae strains spontaneously produced a detectable level of extracellular CTXΦ particles in the culture supernatants whereas another 34.04% (48 of 141) produced CTXΦ particles when induced with mitomycin C. CTXΦ isolated from 10 clinical or environmental strains infected a CT-negative recipient strain, CVD103, both inside the intestines of infant mice and under laboratory conditions. All culture-positive stools analyzed were negative for the presence of CTXΦ both in the DNA probe assay and by in vivo assay for the infection of the recipient strain in infant mice. These results suggested that naturally occurring strains of toxigenicV. cholerae are inducible lysogens of CTXΦ but that cholera pathogenesis in humans is not associated with the excretion of CTXΦ particles in stools, indicating that induction of the phage may not occur efficiently inside the human intestine. However, in view of the efficient transmission of the phage under conditions conducive to the expression of toxin-coregulated pili, it appears that propagation of CTXΦ in the natural habitat may involve both environmental and host factors.


2016 ◽  
Vol 66 (5) ◽  
pp. 479 ◽  
Author(s):  
Pramod Kumar ◽  
Jayprakash Yadav ◽  
Meenu Jain ◽  
Preeti Yadav ◽  
A.K. Goel ◽  
...  

In recent years, emerging trend of antibiotic resistance in Vibrio cholerae associated with cholera epidemics is a matter of serious concern for the management of the disease. Indiscriminate use of antibiotics generally results in selection of antibiotic resistant strains. Introduction of newer antibiotics is a challenging task for the researchers as bacteria soon attain resistance. Therefore, identifying natural compounds of medicinal importance for control of cholera would be the best alternative. Garlic (Allium sativum) was recognised for many centuries in early Chinese, Egyptian and Indian civilisations as an herbal or traditional medicine. In present study, garlic was selected for screening of antimicrobial efficacy against V. cholerae. A total of 55 V. cholerae strains isolated from various outbreaks/epidemics were subjected to antimicrobial testing as per CLSI, USA 2010 guidelines. Antimicrobial screening of garlic extract was performed against all the multidrug resistant strains of V. cholerae. The garlic extracts showed antibacterial activity against all the V. cholerae strains tested, irrespective of their origin, multidrug resistance and virulence. Antibacterial efficacy of garlic on V. cholerae was also evident from in vivo study on sealed adult mice model. Thus, the Garlic extract harnesses the potential to control infection of multidrug resistant V. cholerae, especially in outbreak like situations in remote and under developed areas where drug supply itself is a challenge


1993 ◽  
Vol 4 (1) ◽  
pp. 79-92 ◽  
Author(s):  
L Connell-Crowley ◽  
M J Solomon ◽  
N Wei ◽  
J W Harper

p33cdk2 is a serine-threonine protein kinase that associates with cyclins A, D, and E and has been implicated in the control of the G1/S transition in mammalian cells. Recent evidence indicates that cyclin-dependent kinase 2 (Cdk2), like its homolog Cdc2, requires cyclin binding and phosphorylation (of threonine-160) for activation in vivo. However, the extent to which mechanistic details of the activation process are conserved between Cdc2 and Cdk2 is unknown. We have developed bacterial expression and purification systems for Cdk2 and cyclin A that allow mechanistic studies of the activation process to be performed in the absence of cell extracts. Recombinant Cdk2 is essentially inactive as a histone H1 kinase (< 4 x 10(-5) pmol phosphate transferred.min-1 x microgram-1 Cdk2). However, in the presence of equimolar cyclin A, the specific activity is approximately 16 pmol.mon-1 x microgram-1, 4 x 10(5)-fold higher than Cdk2 alone. Mutation of T160 in Cdk2 to either alanine or glutamic acid had little impact on the specific activity of the Cdk2/cyclin A complex: the activity of Cdk2T160E was indistinguishable from Cdk2, whereas that of Cdk2T160A was reduced by five-fold. To determine if the Cdk2/cyclin A complex could be activated further by phosphorylation of T160, complexes were treated with Cdc2 activating kinase (CAK), purified approximately 12,000-fold from Xenopus eggs. This treatment resulted in an 80-fold increase in specific activity. This specific activity is comparable with that of the Cdc2/cyclin B complex after complete activation by CAK (approximately 1600 pmol.mon-1 x microgram-1). Neither Cdk2T160A/cyclin A nor Cdk2T160E/cyclin A complexes were activated further by treatment with CAK. In striking contrast with cyclin A, cyclin B did not directly activate Cdk2. However, both Cdk2/cyclin A and Cdk2/cyclin B complexes display similar activity after activation by CAK. For the Cdk2/cyclin A complex, both cyclin binding and phosphorylation contribute significantly to activation, although the energetic contribution of cyclin A binding is greater than that of T160 phosphorylation by approximately 5 kcal/mol. The potential significance of direct activation of Cdk2 by cyclins with respect to regulation of cell cycle progression is discussed.


1984 ◽  
Vol 4 (12) ◽  
pp. 2784-2791 ◽  
Author(s):  
G Podgorski ◽  
R A Deering

Two thymidine auxotrophs of Dictyostelium discoideum were isolated which improve the efficiency of in vivo DNA-specific radiolabeling. Mutant HPS400 lacked detectable thymidylate synthetase activity, required 50 micrograms of thymidine per ml, and incorporated sixfold more [3H]thymidine into nuclear DNA than did a wild-type strain. Either dTMP or exogenously provided DNA also permitted growth of this strain. The second mutant, HPS401, was isolated from HPS400 and also lacked thymidylate synthetase activity, but required only 4 micrograms of thymidine per ml for normal growth and incorporated 55 times more thymidine label than did a control strain. Incorporation of the thymidine analog 5'-bromodeoxyuridine was also markedly increased in the mutants. Catalytic properties of the thymidylate synthetase of D. discoideum investigated in cell extracts were consistent with those observed for this enzyme in other organisms. These strains should facilitate studies of DNA replication and repair in D. discoideum which require short-term labeling, DNA of high specific activity, or elevated levels of substitution in DNA by thymidine analogs.


2006 ◽  
Vol 281 (43) ◽  
pp. 32366-32374 ◽  
Author(s):  
Christina L. Cordero ◽  
Dmitry S. Kudryashov ◽  
Emil Reisler ◽  
Karla J. Fullner Satchell

Vibrio cholerae is a Gram-negative bacterial pathogen that exports enterotoxins to alter host cells and to elicit diarrheal disease. Among the secreted toxins is the multifunctional RTX toxin, which causes cell rounding and actin depolymerization by covalently cross-linking actin monomers into dimers, trimers, and higher multimers. The region of the toxin responsible for cross-linking activity is the actin cross-linking domain (ACD). In this study, we further investigated the role of the ACD in the actin cross-linking reaction. We show that the RTX toxin cross-links actin independently of tissue transglutaminase, thus eliminating an indirect model of ACD activity. We demonstrate that a fusion protein of the ACD and the N-terminal portion of lethal factor from Bacillus anthracis (LFNACD) has cross-linking activity in vivo and in crude cell extracts. Furthermore, we determined that LFNACD directly catalyzes the formation of covalent linkages between actin molecules in vitro and that Mg2+ and ATP are essential cofactors for the cross-linking reaction. In addition, G-actin is proposed as a cytoskeletal substrate of the RTX toxin in vivo. Future studies of the in vitro cross-linking reaction will facilitate characterization of the enzymatic properties of the ACD and contribute to our knowledge of the novel mechanism of covalent actin cross-linking.


Sign in / Sign up

Export Citation Format

Share Document