multiple processes
Recently Published Documents


TOTAL DOCUMENTS

515
(FIVE YEARS 202)

H-INDEX

42
(FIVE YEARS 5)

2022 ◽  
Vol 12 ◽  
Author(s):  
Mary E. Law ◽  
Bradley J. Davis ◽  
Amanda F. Ghilardi ◽  
Elham Yaaghubi ◽  
Zaafir M. Dulloo ◽  
...  

Tranexamic Acid (TA) is a clinically used antifibrinolytic agent that acts as a Lys mimetic to block binding of Plasminogen with Plasminogen activators, preventing conversion of Plasminogen to its proteolytically activated form, Plasmin. Previous studies suggested that TA may exhibit anticancer activity by blockade of extracellular Plasmin formation. Plasmin-mediated cleavage of the CDCP1 protein may increase its oncogenic functions through several downstream pathways. Results presented herein demonstrate that TA blocks Plasmin-mediated excision of the extracellular domain of the oncoprotein CDCP1. In vitro studies indicate that TA reduces the viability of a broad array of human and murine cancer cell lines, and breast tumor growth studies demonstrate that TA reduces cancer growth in vivo. Based on the ability of TA to mimic Lys and Arg, we hypothesized that TA may perturb multiple processes that involve Lys/Arg-rich protein sequences, and that TA may alter intracellular signaling pathways in addition to blocking extracellular Plasmin production. Indeed, TA-mediated suppression of tumor cell viability is associated with multiple biochemical actions, including inhibition of protein synthesis, reduced activating phosphorylation of STAT3 and S6K1, decreased expression of the MYC oncoprotein, and suppression of Lys acetylation. Further, TA inhibited uptake of Lys and Arg by cancer cells. These findings suggest that TA or TA analogs may serve as lead compounds and inspire the production of new classes of anticancer agents that function by mimicking Lys and Arg.


2022 ◽  
Vol 10 (1) ◽  
pp. 3
Author(s):  
Dana K. Tucker ◽  
Chloe S. Adams ◽  
Gauri Prasad ◽  
Brian D. Ackley

Neurons form elaborate networks by guiding axons and dendrites to appropriate destinations. Neurites require information about the relative body axes during the initial projection from the cell body, and failure to receive or interpret those cues correctly can result in outgrowth errors. We identified a mutation in the Ig superfamily member syg-2 in a screen for animals with anterior/posterior (A/P) axon guidance defects. We found that syg-2 and its cognate Ig family member syg-1 appear to function in a linear genetic pathway to control the outgrowth of GABAergic axons. We determined that this pathway works in parallel to Wnt signaling. Specifically, mutations in syg-2 or syg-1 selectively affected the embryonically derived Dorsal D-type (DD) GABAergic neurons. We found no evidence that these mutations affected the Ventral D-type neurons (VD) that form later, during the first larval stage. In addition, mutations in syg-1 or syg-2 could result in the DD neurons forming multiple processes, becoming bipolar, rather than the expected pseudounipolar morphology. Given SYG-2′s essential function in synaptogenesis of the hermaphrodite-specific neurons (HSNs), we also examined DD neuron synapses in syg-2 mutants. We found syg-2 mutants had a decreased number of synapses formed, but synaptic morphology was largely normal. These results provide further evidence that the GABAergic motorneurons use multiple guidance pathways during development.


2022 ◽  
Vol 11 ◽  
Author(s):  
Chenchen Sun ◽  
Xiaoxu Yang ◽  
Tianxiao Wang ◽  
Min Cheng ◽  
Yangyang Han

Biomechanics is a physical phenomenon which mainly related with deformation and movement of life forms. As a mechanical signal, it participates in the growth and development of many tissues and organs, including ovary. Mechanical signals not only participate in multiple processes in the ovary but also play a critical role in ovarian growth and normal physiological functions. Additionally, the involvement of mechanical signals has been found in ovarian cancer and other ovarian diseases, prompting us to focus on the roles of mechanical signals in the process of ovarian health to disease. This review mainly discusses the effects and signal transduction of biomechanics (including elastic force, shear force, compressive stress and tensile stress) in ovarian development as a regulatory signal, as well as in the pathological process of normal ovarian diseases and cancer. This review also aims to provide new research ideas for the further research and treatment of ovarian-related diseases.


2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Shao-Yang Zhao ◽  
Huan-Huan Zhao ◽  
Yi-Ming Li ◽  
Bao-Hua Wang ◽  
Sai-Mei Li

Diabetic cognitive dysfunction is a serious complication of type 2 diabetes mellitus (T2DM), which can cause neurological and microvascular damage in the brain. At present, there is no effective treatment for this complication. Bushen Huoxue prescription (BSHX) is a newly formulated compound Chinese medicine containing 7 components. Previous research indicated that BSHX was neuroprotective against advanced glycosylation end product (AGE)-induced PC12 cell insult; however, the effect of BSHX on AGE-induced cerebral microvascular endothelia injury has not been studied. In the current research, we investigated the protective effects of BSHX on AGE-induced injury in bEnd.3 cells. Our findings revealed that BSHX could effectively protect bEnd.3 cells from apoptosis. Moreover, we analyzed the network regulation effect of BSHX on AGE-induced bEnd.3 cells injury at the proteomic level. The LC-MS/MS-based shotgun proteomics analysis showed BSHX negatively regulated multiple AGE-elicited proteins. Bioinformatics analysis revealed these differential proteins were involved in multiple processes, such as Foxo signaling pathway. Further molecular biology analysis confirmed that BSHX could downregulate the expression of FoxO1/3 protein and inhibit its nuclear transfer and inhibit the expression of downstream apoptotic protein Bim and the activation of caspase, so as to play a protective role in AGE-induced bEnd.3 injury. Taken together, these findings demonstrated the role of BSHX in the management of diabetic cerebral microangiopathy and provide some insights into the proteomics-guided pharmacological mechanism study of traditional Chinese Medicine.


2022 ◽  
Author(s):  
Shahi Imam Reja ◽  
Yuichiro Hori ◽  
Takuya Kamikawa ◽  
Kohei Yamasaki ◽  
Miyako Nishiura ◽  
...  

The ability to monitor proteolytic pathways that remove unwanted and damaged proteins from cells is essential for understanding the multiple processes used to maintain cellular homeostasis. In this study, we...


Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 120
Author(s):  
Anca Filimon ◽  
Iulia A. Preda ◽  
Adina F. Boloca ◽  
Gabriela Negroiu

Cutaneous melanoma accounts for only about 7% of skin cancers but is causing almost 90% of deaths. Melanoma cells have a distinct repertoire of mutations from other cancers, a high plasticity and degree of mimicry toward vascular phenotype, stemness markers, versatility in evading and suppress host immune control. They exert a significant influence on immune, endothelial and various stromal cells which form tumor microenvironment. The metastatic stage, the leading cause of mortality in this neoplasm, is the outcome of a complex, still poorly understood, cross-talk between tumor and other cell phenotypes. There is accumulating evidence that Interleukin-8 (IL-8) is emblematic for advanced melanomas. This work aimed to present an updated status of IL-8 in melanoma tumor cellular complexity, through a comprehensive analysis including data from other chemokines and neoplasms. The multiple processes and mechanisms surveyed here demonstrate that IL-8 operates following orchestrated programs within signaling webs in melanoma, stromal and vascular cells. Importantly, the yet unknown molecularity regulating IL-8 impact on cells of the immune system could be exploited to overturn tumor fate. The molecular and cellular targets of IL-8 should be brought into the attention of even more intense scientific exploration and valorization in the therapeutical management of melanoma.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 85
Author(s):  
Duy-Nam Phan ◽  
Muhammad Qamar Khan ◽  
Van-Chuc Nguyen ◽  
Hai Vu-Manh ◽  
Anh-Tuan Dao ◽  
...  

This study demonstrated a controllable release properties and synergistic antibacterial actions between orange essential oil (OEO) and silver nanoparticles (AgNPs) incorporated onto cellulose (CL) nanofibers. The preparation of AgNPs attached on CL nanofibers was conducted through multiple processes including the deacetylation process to transform cellulose acetate (CA) nanofibers to CL nanofibers, the in situ synthesis of AgNPs, and the coating of as-prepared silver composite CL nanofibers using OEO solutions with two different concentrations. The success of immobilization of AgNPs onto the surface of CL nanofibers and the incorporation of OEO into the polymer matrix was confirmed by SEM-EDS, TEM, XRD, and FT-IR characterizations. The tensile strength, elongation at break, and Young’s modulus of the nanofibers after each step of treatment were recorded and compared to pristine CA nanofibers. The high antibacterial activities of AgNPs and OEO were assessed against Gram-positive B. subtilis and Gram-negative E. coli microorganisms. The combined effects of two antimicrobials, AgNPs and OEO, were distinctively recognized against E. coli.


Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 51
Author(s):  
Taimoor I. Sheikh ◽  
Ricardo Harripaul ◽  
Nasim Vasli ◽  
Majid Ghadami ◽  
Susan L. Santangelo ◽  
...  

Nucleolin (NCL/C23; OMIM: 164035) is a major nucleolar protein that plays a critical role in multiple processes, including ribosome assembly and maturation, chromatin decondensation, and pre-rRNA transcription. Due to its diverse functions, nucleolin has frequently been implicated in pathological processes, including cancer and viral infection. We recently identified a de novo frameshifting indel mutation of NCL, p.Gly664Glufs*70, through whole-exome sequencing of autism spectrum disorder trios. Through the transfection of constructs encoding either a wild-type human nucleolin or a mutant nucleolin with the same C-terminal sequence predicted for the autism proband, and by using co-localization with the nucleophosmin (NPM; B23) protein, we have shown that the nucleolin mutation leads to mislocalization of the NCL protein from the nucleolus to the nucleoplasm. Moreover, a construct with a nonsense mutation at the same residue, p.Gly664*, shows a very similar effect on the location of the NCL protein, thus confirming the presence of a predicted nucleolar location signal in this region of the NCL protein. Real-time fluorescence recovery experiments show significant changes in the kinetics and mobility of mutant NCL protein in the nucleoplasm of HEK293Tcells. Several other studies also report de novo NCL mutations in ASD or neurodevelopmental disorders. The altered mislocalization and dynamics of mutant NCL (p.G664Glufs*70/p.G664*) may have relevance to the etiopathlogy of NCL-related ASD and other neurodevelopmental phenotypes.


2021 ◽  
Vol 6 ◽  
Author(s):  
Sebastian von Peter ◽  
Tomi Bergstrøm ◽  
Irene Nenoff-Herchenbach ◽  
Mark Steven Hopfenbeck ◽  
Raffaella Pocobello ◽  
...  

In recent decades, the use of psychosocial and psychiatric care systems has increased worldwide. A recent article proposed the concept of psychiatrization as an explanatory framework, describing multiple processes responsible for the spread of psychiatric concepts and forms of treatment. This article aims to explore the potentials of the Open Dialogue (OD) approach for engaging in less psychiatrizing forms of psychosocial support. While OD may not be an all-encompassing solution to de-psychiatrization, this paper refers to previous research showing that OD has the potential to 1) limit the use of neuroleptics, 2), reduce the incidences of mental health problems and 3) decrease the use of psychiatric services. It substantiates these potentials to de-psychiatrize psychosocial support by exploring the OD’s internal logic, its use of language, its processes of meaning-making, its notion of professionalism, its promotion of dialogue and how OD is set up structurally. The conclusion touches upon the dangers of co-optation, formalization and universalization of the OD approach and stresses the need for more societal, layperson competencies in dealing with psychosocial crises.


Author(s):  
Esmeralda Parra-Peralbo ◽  
Ana Talamillo ◽  
Rosa Barrio

Adipose tissue is a dynamic organ, well known for its function in energy storage and mobilization according to nutrient availability and body needs, in charge of keeping the energetic balance of the organism. During the last decades, adipose tissue has emerged as the largest endocrine organ in the human body, being able to secrete hormones as well as inflammatory molecules and having an important impact in multiple processes such as adipogenesis, metabolism and chronic inflammation. However, the cellular progenitors, development, homeostasis and metabolism of the different types of adipose tissue are not fully known. During the last decade, Drosophila melanogaster has demonstrated to be an excellent model to tackle some of the open questions in the field of metabolism and development of endocrine/metabolic organs. Discoveries ranged from new hormones regulating obesity to subcellular mechanisms that regulate lipogenesis and lipolysis. Here, we review the available evidences on the development, types and functions of adipose tissue in Drosophila and identify some gaps for future research. This may help to understand the cellular and molecular mechanism underlying the pathophysiology of this fascinating key tissue, contributing to establish this organ as a therapeutic target.


Sign in / Sign up

Export Citation Format

Share Document