PREDICTING TIDAL MARSH SURVIVAL OR SUBMERGENCE TO FUTURE SEA-LEVEL RISE USING PALEO SEA-LEVEL DATA

2018 ◽  
Author(s):  
Benjamin P. Horton ◽  
◽  
Ian Shennan ◽  
Sarah L. Bradley ◽  
Niamh Cahill ◽  
...  
2017 ◽  
Author(s):  
Benjamin P. Horton ◽  
◽  
Ian Shennan ◽  
Sarah L. Bradley ◽  
Niamh Cahill ◽  
...  

Ecology ◽  
1993 ◽  
Vol 74 (1) ◽  
pp. 96-103 ◽  
Author(s):  
R. Scott Warren ◽  
William A. Niering

2021 ◽  
Author(s):  
Olivier Gourgue ◽  
Jim van Belzen ◽  
Christian Schwarz ◽  
Wouter Vandenbruwaene ◽  
Joris Vanlede ◽  
...  

Abstract. There is an increasing demand for creation and restoration of tidal marshes around the world, as they provide highly valued ecosystem services. Yet, tidal marshes are strongly vulnerable to factors such as sea level rise and declining sediment supply. How fast the restored ecosystem develops, how resilient it is to sea level rise, and how this can be steered by restoration design, are key questions that are typically challenging to assess. In this paper, we apply a biogeomorphic model to a planned tidal marsh restoration by dike breaching. Our modeling approach integrates tidal hydrodynamics, sediment transport and vegetation dynamics, accounting for relevant fine-scale flow-vegetation interactions (less than 1 m2) and their impact on vegetation and landform development at the landscape scale (several km2) and on the long term (several decades). Our model performance is positively evaluated against observations of vegetation and geomorphic development in adjacent tidal marshes. Model scenarios demonstrate that the restored tidal marsh can keep pace with realistic rates of sea level rise and that its resilience is more sensitive to the availability of suspended sediments than to the rate of sea level rise. We further demonstrate that restoration design options can steer marsh resilience, as it affects the rates and spatial patterns of biogeomorphic development. By varying the width of two dike breaches, which serve as tidal inlets to the restored marsh, we show that a larger difference in the width of the two inlets leads to more diversity in restored habitats. This study showcases that biogeomorphic modeling can support management choices in restoration design to optimize tidal marsh development towards sustainable restoration goals.


Shore & Beach ◽  
2021 ◽  
pp. 13-20
Author(s):  
Albert McCullough ◽  
David Curson ◽  
Erik Meyers ◽  
Matthew Whitbeck

Tidal marsh loss at Blackwater National Wildlife Refuge (NWR) has been a major concern of refuge managers in recent decades. The approximately 2,035 hectares (5,028 acres) of tidal marsh that have converted to open water in Blackwater NWR since 1938 (Scott et al. 2009) represent one of the most significant areas of marsh conversion within the Chesapeake Bay. In 2013, a suite of climate adaptation strategies focused on sea level rise was developed for Blackwater NWR and surrounding areas of Dorchester County by the Blackwater Climate Adaptation Project (BCAP). The BCAP is a collaboration of The Conservation Fund, Audubon Maryland-DC, and the U.S. Fish and Wildlife Service, assisted by the Maryland Department of Natural Resources (MD DNR), U.S. Geological Survey, and others. In 2016, the BCAP implemented a thin-layer placement (TLP) project at Shorter’s Wharf in Blackwater NWR on 16 hectares (40 acres) of subsiding and fragmenting tidal marsh dominated by Schoenoplectus americanus, Spartina alterniflora, and Spartina patens. The purpose of the project was to increase the 16 hectares’ (40 acres’) resiliency to climate-driven sea level rise and storm impacts. The project built up the marsh elevation by applying thin layers of sediment dredged from the adjacent Blackwater River. The sediment enhancement was designed to extend the longevity of the marsh and increase its resiliency by raising its surface elevation in relation to the tidal regime and to return the habitat to its prior high-marsh condition with S. patens dominating. The colonization of this site by saltmarsh sparrow would be an indicator of success in reaching this goal. Dredging operations in November and December 2016 placed approximately 19,900 cubic meters (26,000 cubic yards) of sediment on the project site. Post-restoration elevations obtained one year after material placement indicated that, although the target elevations were achieved in 78% of the surveyed placement area, the material was not distributed uniformly. Coarser material tended to stack up at the discharge location while the grain size declined and the slopes flattened toward the periphery of the discharge area. In 2017, natural vegetation had regenerated through the placed sediment with vigorous regrowth of S. americanus and S. alterniflora . This regrowth was supplemented with hand-planting of more than 200,000 plugs of S. patens. Vegetation monitoring is ongoing to determine the plant composition evolution within the placement site. Pre-dredge and post-dredge bathymetric surveys reveal 70% accretion nearly two years after dredging within the borrow area footprint.


1993 ◽  
Vol 30 (1) ◽  
pp. 103-108 ◽  
Author(s):  
Philip R. Hill ◽  
Arnaud Héquette ◽  
Marie-Hélène Ruz

New radiocarbon ages pertaining to the Holocene sea-level history of the Canadian Beaufort shelf are presented. The ages were obtained on samples of freshwater and tidal-marsh peat beds from offshore boreholes and shallow cores in the coastal zone and on molluscs and a single piece of wood deposited in foraminifera-bearing marine sediments. Although none of the samples record directly the position of relative sea level, the suite of ages constrains the regional curve sufficiently to suggest a faster rate of mid Holocene sea level rise (7–14 mm/a) than previously thought. The rate of relative rise slowed markedly in the last 3000 years, approaching the present at a maximum probable rate of 2.5 mm/a.


2015 ◽  
Vol 74 ◽  
pp. 337-344 ◽  
Author(s):  
C.T. Overton ◽  
J.Y. Takekawa ◽  
M.L. Casazza ◽  
T.D. Bui ◽  
M. Holyoak ◽  
...  
Keyword(s):  

2016 ◽  
Vol 90 (1) ◽  
pp. 79-93 ◽  
Author(s):  
W. Gregory Hood ◽  
Eric E. Grossman ◽  
Curt Veldhuisen
Keyword(s):  

2016 ◽  
Vol 204 ◽  
pp. 263-275 ◽  
Author(s):  
Kenneth B. Raposa ◽  
Kerstin Wasson ◽  
Erik Smith ◽  
Jeffrey A. Crooks ◽  
Patricia Delgado ◽  
...  
Keyword(s):  

2019 ◽  
Vol 62 (6) ◽  
pp. 1567-1577
Author(s):  
Brock J. W. Kamrath ◽  
Michael R. Burchell ◽  
Nicole Cormier ◽  
Ken W. Krauss ◽  
Darren J. Johnson

Abstract. The purpose of this study was to determine the elevation dynamics of a created tidal marsh on the North Carolina coast. Deep rod surface elevation tables (RSET) and feldspar marker horizons (MH) were installed in plots to measure net surface elevation changes and to quantify contributing processes. Twelve total plots were placed on four elevation gradient transects (three transects within the created marsh and one within a reference marsh), with three plots along each transect. Elevation gradient transects included a low marsh plot dominated by , a middle marsh plot dominated by , and a high marsh plot dominated by . RSET and MH were measured in December 2012, January 2014, April 2017, and March 2018. Elevation change ranged from 1.0 to 4.0 mm year-1 within the created marsh and from -0.4 to 2.0 mm year-1 within the reference marsh. When compared to the long-term linear trend in local relative sea level rise (RSLR) of 3.10 ±0.35 mm year-1, the middle marsh plots within the created marsh trended toward survival, with an observed elevation increase of 3.1 ±0.2 mm year-1. Alternatively, the low and high marsh plots within the created marsh trended toward submergence, with observed elevation increases of 2.1 ±0.2 and 1.3 ±0.2 mm year-1, respectively. These results indicate that a created marsh can display elevation dynamics similar to a natural marsh and can be resilient to current rates of RSLR if constructed with a high elevation capital. Surface elevation changes were observed over a short time period and in a relatively young marsh, so it is uncertain if these trends will continue or how the long-term relation with RSLR will develop. While this study provided initial data on the ability of created tidal marshes to respond to observed sea level rise, subsequent observations are needed to evaluate the long-term elevation dynamics. Keywords: Resiliency, Sea level rise, Surface elevation tables, Tidal marsh, Vertical accretion.


Sign in / Sign up

Export Citation Format

Share Document