marsh restoration
Recently Published Documents


TOTAL DOCUMENTS

144
(FIVE YEARS 36)

H-INDEX

21
(FIVE YEARS 3)

Author(s):  
Md Masum Billah ◽  
Md Khurshid Alam Bhuiyan ◽  
Mohammad Ahsanul Islam ◽  
Jewel Das ◽  
ATM Rafiqul Hoque

Diversity ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 680
Author(s):  
Janine B. Adams ◽  
Jacqueline L. Raw ◽  
Taryn Riddin ◽  
Johan Wasserman ◽  
Lara Van Niekerk

Restoration of salt marsh is urgent, as these ecosystems provide natural coastal protection from sea-level rise impacts, contribute towards climate change mitigation, and provide multiple ecosystem services including supporting livelihoods. This study identified potential restoration sites for intervention where agricultural and degraded land could be returned to salt marsh at a national scale in South African estuaries. Overall, successful restoration of salt marsh in some estuaries will require addressing additional pressures such as freshwater inflow reduction and deterioration of water quality. Here, we present, a socio-ecological systems framework for salt marsh restoration that links salt marsh state and the well-being of people to guide meaningful and implementable management and restoration interventions. The framework is applied to a case study at the Swartkops Estuary where the primary restoration intervention intends to route stormwater run-off to abandoned salt works to re-create aquatic habitat for waterbirds, enhance carbon storage, and provide nutrient filtration. As the framework is generalized, while still allowing for site-specific pressures to be captured, there is potential for it to be applied at the national scale, with the largest degraded salt marsh areas set as priorities for such an initiative. It is estimated that ~1970 ha of salt marsh can be restored in this way, and this represents a 14% increase in the habitat cover for the country. Innovative approaches to restoring and improving condition are necessary for conserving salt marshes and the benefits they provide to society.


Author(s):  
Ariane Arias‐Ortiz ◽  
Patty Y. Oikawa ◽  
Joseph Carlin ◽  
Pere Masqué ◽  
Julie Shahan ◽  
...  

Shore & Beach ◽  
2021 ◽  
pp. 33-40
Author(s):  
Samuel Zapp ◽  
Giulio Mariotti

Dredged material can be used for marsh restoration by depositing it on the marsh surface (thin-layer placement), by releasing it at the mouth of channels and allowing tidal currents to transport it onto the marsh platform (channel seeding), or by creating new marshes over shallow areas of open water. We investigate the efficacy of these different methods using a comprehensive 2D marsh evolution model that simulates tidal dynamics, vegetation processes, bank and wave erosion, and ponding. Total marsh area is assessed over 50 years in an idealized microtidal marsh under different relative sea level rise (RSLR) scenarios. For a given volume of total sediment added, the frequency of deposition is relatively unimportant in maximizing total marsh area, but the spatial allocation of the dredged material is crucial. For a given volume of sediment, thin-layer deposition is most effective at preserving total marsh area, especially at high rates of RSLR. Channel seeding is less efficient, but it could still provide benefits if larger amounts of sediment are deposited every 1-2 years. Marsh creation is also beneficial, because it not only increases the marsh area, but additionally slows the erosion of the existing marsh. The 2D model is highly computationally efficient and thus suited to explore many scenarios when evaluating a restoration project. Coupling the model with a cost assessment of the different restoration techniques would provide a tool to optimize marsh restoration.


2021 ◽  
Author(s):  
Olivier Gourgue ◽  
Jim van Belzen ◽  
Christian Schwarz ◽  
Wouter Vandenbruwaene ◽  
Joris Vanlede ◽  
...  

Abstract. There is an increasing demand for creation and restoration of tidal marshes around the world, as they provide highly valued ecosystem services. Yet, tidal marshes are strongly vulnerable to factors such as sea level rise and declining sediment supply. How fast the restored ecosystem develops, how resilient it is to sea level rise, and how this can be steered by restoration design, are key questions that are typically challenging to assess. In this paper, we apply a biogeomorphic model to a planned tidal marsh restoration by dike breaching. Our modeling approach integrates tidal hydrodynamics, sediment transport and vegetation dynamics, accounting for relevant fine-scale flow-vegetation interactions (less than 1 m2) and their impact on vegetation and landform development at the landscape scale (several km2) and on the long term (several decades). Our model performance is positively evaluated against observations of vegetation and geomorphic development in adjacent tidal marshes. Model scenarios demonstrate that the restored tidal marsh can keep pace with realistic rates of sea level rise and that its resilience is more sensitive to the availability of suspended sediments than to the rate of sea level rise. We further demonstrate that restoration design options can steer marsh resilience, as it affects the rates and spatial patterns of biogeomorphic development. By varying the width of two dike breaches, which serve as tidal inlets to the restored marsh, we show that a larger difference in the width of the two inlets leads to more diversity in restored habitats. This study showcases that biogeomorphic modeling can support management choices in restoration design to optimize tidal marsh development towards sustainable restoration goals.


2021 ◽  
Author(s):  
Jacob Berkowitz ◽  
Christine VanZomeren ◽  
Nicole Fresard

Many marshes show signs of degradation due to fragmentation, lack of sediment inputs, and erosion which may be exacerbated by sea level rise and increasing storm frequency/intensity. As a result, resource managers seek to restore marshes via introduction of sediment to increase elevation and stabilize the marsh platform. Recent field observations suggest the rapid formation of iron sulfide (FeS) materials following restoration in several marshes. To investigate, a laboratory microcosm study evaluated the formation of FeS following simulated restoration activities under continually inundated, simulated drought, and simulated tidal conditions. Results indicate that FeS horizon development initiated within 16 days, expanding to encompass > 30% of the soil profile after 120 days under continuously inundated and simulated tidal conditions. Continuously inundated conditions supported higher FeS content compared to other treatments. Dissolved and total Fe and S measurements suggest the movement and diffusion of chemical constituents from native marsh soil upwards into the overlying sediments, driving FeS precipitation. The study highlights the need to consider biogeochemical factors resulting in FeS formation during salt marsh restoration activities. Additional field research is required to link laboratory studies, which may represent a worst-case scenario, with in-situ conditions.


2021 ◽  
Vol 39 (8) ◽  
pp. 1328-1337
Author(s):  
Bayda Dhaidan ◽  
Imzahim Alwan ◽  
Mahmoud Al-Khafaji

Author(s):  
Alexandra S. Thomsen ◽  
Johannes Krause ◽  
Monica Appiano ◽  
Karen E. Tanner ◽  
Charlie Endris ◽  
...  

AbstractSea level rise threatens coastal wetlands worldwide, and restoration projects are implementing strategies that decrease vulnerability to this threat. Vegetation monitoring at sites employing new restoration strategies and determination of appropriate monitoring techniques improve understanding of factors leading to restoration success. In Central California, soil addition raised a degraded marsh plain to a high elevation expected to be resilient to sea level rise over the next century. We monitored plant survival and recruitment using area searches, transect surveys, and unoccupied aircraft systems (UAS) imagery. We used random forest modeling to examine the influence of nine environmental variables on vegetation colonization and conducted targeted soil sampling to examine additional factors contributing to vegetation patterns. Limited pre-construction vegetation survived soil addition, likely due to the sediment thickness (mean = 69 cm) and placement method. After 1 year, about 10% of the initially bare area saw vegetation reestablishment. Elevation and inundation frequency were particularly critical to understanding restoration success, with greatest vegetation cover in high-elevation areas tidally inundated < 0.85% of the time. Soil analysis suggested greater salinity stress and ammonium levels in poorly-vegetated compared to well-vegetated areas at the same elevation. We found that both transect and UAS methods were suitable for monitoring vegetation colonization. Field transects may provide the best approach for tracking early vegetation colonization at moderate-sized sites under resource limitations, but UAS provide a complementary landscape perspective. Beyond elucidating patterns and drivers of marsh dynamics at a newly restored site, our investigation informs monitoring of marsh restoration projects globally.


2021 ◽  
Vol 9 (8) ◽  
pp. 849
Author(s):  
Lorie W. Staver ◽  
Jeffrey C. Cornwell ◽  
Nicholas J. Nidzieko ◽  
Kenneth W. Staver ◽  
J. Court Stevenson ◽  
...  

Tidal marsh restoration using dredged material is being undertaken in many coastal areas to replace lost habitat and ecosystem services due to tidal marsh loss. The fate of high levels of nitrogen (N) in fine-grained dredged material used as a substrate for marsh restoration is uncertain, but if exported tidally may cause subtidal habitat degradation. In this study, a mass balance was developed to characterize N fluxes in a two-year-old restored tidal marsh constructed with fine-grained dredged material at Poplar Island, MD, in Chesapeake Bay, and to evaluate the potential impact on the adjacent submersed aquatic vegetation (SAV) habitat. Denitrification and N accumulation in Spartina organic matter were identified as the major sinks (21.31 and 28.5 mg N m−2 d−1, respectively), while tidal export of TN was more modest (9.4 mg N m−2 d−1) and inorganic N export was low (1.59 mg N m−2 d−1). Internal cycling helped retain N within the marsh. Mineralization of N associated with labile organic matter in the dredged material was likely a large, but unquantified, source of N supporting robust plant growth and N exports. Exceedances of SAV water quality habitat requirements in the subtidal region adjacent to the marsh were driven by elevated Chesapeake Bay concentrations rather than enrichment by the marsh.


Sign in / Sign up

Export Citation Format

Share Document