DETRITAL ZIRCON PROVENANCE OF THE EARLY PALEOZOIC ARENITES OF THE LAURENTIAN MIDCONTINENT

2018 ◽  
Author(s):  
David H. Malone ◽  
◽  
Alex Konstantinou ◽  
John P. Craddock
2020 ◽  
Vol 12 (1) ◽  
pp. 25-43
Author(s):  
Yuan Peng ◽  
Yongsheng Zhang ◽  
Eenyuan Xing ◽  
Linlin Wang

AbstractThe Zhongwunongshan Structural Belt (ZWSB) locates between the Olongbruk Microblock of North Qaidam and the South Qilian Block in China, and it has important implication for understanding the tectonic significance of North Qaidam. Nowadays, there are few discussion on the Caledonian tectonothermal events of the Zhongwunongshan Structural Belt, and there exist different opinions on provenance and tectonic environment of the Zhongwunongshan Group in the ZWSB and its adjacent North Qaidam. In this study, a comprehensive analysis of the detrital zircon geochronological research was carried out on the Zhongwunongshan Group. The detrital zircon U-Pb dating results showed two major populations. The first was Neoproterozoic (966-725 Ma) with a ∈Hf(t) = −15.9 to 9.5, and the other was late Early Paleozoic (460-434Ma) with a ∈Hf(t) = −9.6 to −3.1. In combination with previous research, the dominated provenances were found to be the Neoproterozoic granitic gneiss of the Yuqia-Shaliuhe HP-UHP metamorphic belt and the late Early Paleozoic granite of the Tanjianshan ophiolite-volcanic arc belt in North Qaidam. The Zhongwunongshan Group was deposited in the back-arc sedimentary basin related to the Caledonian collisional orogeny during Middle Silurian-Early Devonian (434-407.9 Ma).


2019 ◽  
Vol 131 (3-4) ◽  
pp. 695-698
Author(s):  
Ed Landing ◽  
Osman Salad Hersi ◽  
Lisa Amati ◽  
Stephen R. Westrop ◽  
David A. Franzi

Lithosphere ◽  
2020 ◽  
Vol 2020 (1) ◽  
pp. 1-17
Author(s):  
Li-Guang Wu ◽  
Xian-Hua Li ◽  
Weihua Yao ◽  
Xiao-Xiao Ling ◽  
Kai Lu

Abstract Widespread Paleozoic and Mesozoic granites are characteristics of SE China, but the geodynamic mechanisms responsible for their emplacement are an issue of ongoing debate. To shed new light on this issue, we present an integrated geochronological and isotopic study of detrital zircon and monazite from Cambrian metasandstones and modern beach sands in the Yangjiang region, SE China. For the Cambrian metasandstone sample, detrital zircon displays a wide age range between 490 and 3000 Ma, while monazite grains record a single age peak of 235 Ma. The results suggest that a significant Triassic (235 Ma) metamorphic event is recorded by monazite but not zircon. For the beach sand sample, detrital zircon ages show six peaks at ca. 440, 240, 155, 135, 115, and 100 Ma, whereas detrital monazite yields a dominant age peak at 237 Ma and a very minor age peak at 435 Ma. Beach sand zircon displays features that are typical of a magmatic origin. Their Hf–O isotopes reveal two crustal reworking events during the early Paleozoic and Triassic, in addition to one juvenile crustal growth event during the Jurassic–Cretaceous. The beach sand monazite records intense Triassic igneous and metamorphic events with significant crustal reworking. Such early Paleozoic and Triassic geochemical signatures of detrital zircon and monazite suggest they were derived from granitoids and metamorphic rocks which formed in intraplate orogenies, i.e., the early Paleozoic Wuyi–Yunkai Orogeny and Triassic Indosinian Orogeny. The Jurassic–Cretaceous signature of detrital zircon may reflect multistage magmatism that was related to subduction of the Paleo-Pacific Plate beneath SE China.


2016 ◽  
Vol 339 ◽  
pp. 289-303 ◽  
Author(s):  
Beihang Zhang ◽  
Jin Zhang ◽  
Yiping Zhang ◽  
Heng Zhao ◽  
Yannan Wang ◽  
...  

Author(s):  
Bingshuang Zhao ◽  
Xiaoping Long ◽  
Jin Luo ◽  
Yunpeng Dong ◽  
Caiyun Lan ◽  
...  

The crustal evolution of the Yangtze block and its tectonic affinity to other continents of Rodinia and subsequent Gondwana have not been well constrained. Here, we present new U-Pb ages and Hf isotopes of detrital zircons from the late Neoproterozoic to early Paleozoic sedimentary rocks in the northwestern margin of the Yangtze block to provide critical constraints on their provenance and tectonic settings. The detrital zircons of two late Neoproterozoic samples have a small range of ages (0.87−0.67 Ga) with a dominant age peak at 0.73 Ga, which were likely derived from the Hannan-Micangshan arc in the northwestern margin of the Yangtze block. In addition, the cumulative distribution curves from the difference between the depositional age and the crystalline age (CA−DA) together with the mostly positive εHf(t) values of these zircon crystals (−6.8 to +10.7, ∼90% zircon grains with εHf[t] > 0) suggest these samples were deposited in a convergent setting during the late Neoproterozoic. In contrast, the Cambrian−Silurian sediments share a similar detrital zircon age spectrum that is dominated by Grenvillian ages (1.11−0.72 Ga), with minor late Paleoproterozoic (ca. 2.31−1.71 Ga), Mesoarchean to Neoarchean (3.16−2.69 Ga), and latest Archean to early Paleoproterozoic (2.57−2.38 Ga) populations, suggesting a significant change in the sedimentary provenance and tectonic setting from a convergent setting after the breakup of Rodinia to an extensional setting during the assembly of Gondwana. However, the presence of abundant Grenvillian and Neoarchean ages, along with their moderately to highly rounded shapes, indicates a possible sedimentary provenance from exotic continental terrane(s). Considering the potential source areas around the Yangtze block when it was a part of Rodinia or Gondwana, we suggest that the source of these early Paleozoic sediments had typical Gondwana affinities, such as the Himalaya, north India, and Tarim, which is also supported by their stratigraphic similarity, newly published paleomagnetic data, and tectono-thermal events in the northern fragments of Gondwana. This implies that after prolonged subduction in the Neoproterozoic, the northwestern margin of the Yangtze block began to be incorporated into the assembly of Gondwana and then accept sediments from the northern margin of Gondwanaland in a passive continental margin setting.


Sign in / Sign up

Export Citation Format

Share Document