sedimentary provenance
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 41)

H-INDEX

22
(FIVE YEARS 4)

Data in Brief ◽  
2021 ◽  
pp. 107719
Author(s):  
Ballasus Helen ◽  
Hans von Suchodoletz ◽  
Birgit Schneider ◽  
Hermann Grün ◽  
Anna Heller ◽  
...  

2021 ◽  
Author(s):  
Megan A Mueller ◽  
Alexis Licht ◽  
Clay Campbell ◽  
Faruk Ocakoğlu ◽  
Gui Aksit ◽  
...  

2021 ◽  
Author(s):  
Megan A Mueller ◽  
Alexis Licht ◽  
Clay Franklin Campbell ◽  
Faruk Ocakoğlu ◽  
Gui Aksit ◽  
...  

Geosphere ◽  
2021 ◽  
Vol 17 (5) ◽  
pp. 1422-1453
Author(s):  
Snir Attia ◽  
Scott R. Paterson ◽  
Jason Saleeby ◽  
Wenrong Cao

Abstract A compilation of new and published detrital zircon U-Pb age data from Permo-Triassic to Cretaceous intra-arc strata of the Sierra Nevada (eastern California, USA) reveals consistent sedimentary provenance and depositional trends across the entire Sierra Nevada arc. Detrital zircon age distributions of Sierra Nevada intra-arc strata are dominated by Mesozoic age peaks corresponding to coeval or just preceding arc activity. Many samples display a spread of pre-300 Ma ages that is indistinguishable from the detrital age distributions of pre-Mesozoic prebatholithic framework strata and southwestern Laurentian continental margin deposits. Synthesis of detrital zircon age data with tectonostratigraphic constraints indicates that a marine to subaerial arc was established in Triassic time, giving way to widespread shallow- to deep-marine deposition in latest Triassic to Early Jurassic time that continued until the emergence of the arc surface in the Early Cretaceous. No data presented herein require the existence of Mesozoic exotic terranes and/or outboard arcs that were previously hypothesized to have been accreted to the Sierra Nevada. We conclude that Sierra Nevada intra-arc strata formed within a coherent depositional network that was intimately linked to the southwestern United States Cordilleran margin throughout the span of Mesozoic arc activity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jialin Wang ◽  
Chaodong Wu ◽  
Yue Jiao ◽  
Bo Yuan

AbstractDue to the unknown Triassic volcanism in the Junggar Basin, the Middle–Late Triassic sedimentary provenance in the southern Junggar Basin (SJB) has long been controversial. Detrital zircon grains from 13 samples of the Middle–Upper Triassic Xiaoquangou Group in the SJB were analyzed using zircon U–Pb geochronology to constrain the provenance of Triassic sedimentary rocks and to further understand their source-to-sink system. Comparison of detrital zircon U–Pb age distributions for 13 samples reveals that the Triassic age populations predominate in sediments of the northern Bogda Mountains, with subordinate in the southern Bogda Mountains, and no or minimal in the North Tianshan (NTS). Coupled with sandstone petrological, sedimentary geochemical and paleocurrent data, the Triassic detrital zircon grains of the Xiaoquangou Group in the SJB were probably input from the Bogda Mountains. As Pennsylvanian and Mississippian zircon grains are mainly derived from the NTS and Central Tianshan (CTS), the provenance of the Xiaoquangou Group includes the NTS, CTS and Bogda Mountains. But the different samples in different sink areas have different provenances, originating from at least four source-to-sink systems. The supply of sediments from the Bogda Mountains started in the Late Triassic, suggesting initial uplift of the Bogda Mountains.


Author(s):  
Gabriel Paravidini ◽  
Humberto Luis Siqueira Reis ◽  
Monica Heilbron ◽  
Manuela de Oliveira Carvalho ◽  
Carla Cristine Aguiar-Neto ◽  
...  

Author(s):  
Bingshuang Zhao ◽  
Xiaoping Long ◽  
Jin Luo ◽  
Yunpeng Dong ◽  
Caiyun Lan ◽  
...  

The crustal evolution of the Yangtze block and its tectonic affinity to other continents of Rodinia and subsequent Gondwana have not been well constrained. Here, we present new U-Pb ages and Hf isotopes of detrital zircons from the late Neoproterozoic to early Paleozoic sedimentary rocks in the northwestern margin of the Yangtze block to provide critical constraints on their provenance and tectonic settings. The detrital zircons of two late Neoproterozoic samples have a small range of ages (0.87−0.67 Ga) with a dominant age peak at 0.73 Ga, which were likely derived from the Hannan-Micangshan arc in the northwestern margin of the Yangtze block. In addition, the cumulative distribution curves from the difference between the depositional age and the crystalline age (CA−DA) together with the mostly positive εHf(t) values of these zircon crystals (−6.8 to +10.7, ∼90% zircon grains with εHf[t] > 0) suggest these samples were deposited in a convergent setting during the late Neoproterozoic. In contrast, the Cambrian−Silurian sediments share a similar detrital zircon age spectrum that is dominated by Grenvillian ages (1.11−0.72 Ga), with minor late Paleoproterozoic (ca. 2.31−1.71 Ga), Mesoarchean to Neoarchean (3.16−2.69 Ga), and latest Archean to early Paleoproterozoic (2.57−2.38 Ga) populations, suggesting a significant change in the sedimentary provenance and tectonic setting from a convergent setting after the breakup of Rodinia to an extensional setting during the assembly of Gondwana. However, the presence of abundant Grenvillian and Neoarchean ages, along with their moderately to highly rounded shapes, indicates a possible sedimentary provenance from exotic continental terrane(s). Considering the potential source areas around the Yangtze block when it was a part of Rodinia or Gondwana, we suggest that the source of these early Paleozoic sediments had typical Gondwana affinities, such as the Himalaya, north India, and Tarim, which is also supported by their stratigraphic similarity, newly published paleomagnetic data, and tectono-thermal events in the northern fragments of Gondwana. This implies that after prolonged subduction in the Neoproterozoic, the northwestern margin of the Yangtze block began to be incorporated into the assembly of Gondwana and then accept sediments from the northern margin of Gondwanaland in a passive continental margin setting.


Sign in / Sign up

Export Citation Format

Share Document