Detrital zircon record of the early Paleozoic meta-sedimentary rocks in Russian Altai: Implications on their provenance and the tectonic nature of the Altai–Mongolian terrane

Lithos ◽  
2015 ◽  
Vol 233 ◽  
pp. 209-222 ◽  
Author(s):  
Ming Chen ◽  
Min Sun ◽  
Keda Cai ◽  
Mikhail M. Buslov ◽  
Guochun Zhao ◽  
...  
Author(s):  
Bingshuang Zhao ◽  
Xiaoping Long ◽  
Jin Luo ◽  
Yunpeng Dong ◽  
Caiyun Lan ◽  
...  

The crustal evolution of the Yangtze block and its tectonic affinity to other continents of Rodinia and subsequent Gondwana have not been well constrained. Here, we present new U-Pb ages and Hf isotopes of detrital zircons from the late Neoproterozoic to early Paleozoic sedimentary rocks in the northwestern margin of the Yangtze block to provide critical constraints on their provenance and tectonic settings. The detrital zircons of two late Neoproterozoic samples have a small range of ages (0.87−0.67 Ga) with a dominant age peak at 0.73 Ga, which were likely derived from the Hannan-Micangshan arc in the northwestern margin of the Yangtze block. In addition, the cumulative distribution curves from the difference between the depositional age and the crystalline age (CA−DA) together with the mostly positive εHf(t) values of these zircon crystals (−6.8 to +10.7, ∼90% zircon grains with εHf[t] > 0) suggest these samples were deposited in a convergent setting during the late Neoproterozoic. In contrast, the Cambrian−Silurian sediments share a similar detrital zircon age spectrum that is dominated by Grenvillian ages (1.11−0.72 Ga), with minor late Paleoproterozoic (ca. 2.31−1.71 Ga), Mesoarchean to Neoarchean (3.16−2.69 Ga), and latest Archean to early Paleoproterozoic (2.57−2.38 Ga) populations, suggesting a significant change in the sedimentary provenance and tectonic setting from a convergent setting after the breakup of Rodinia to an extensional setting during the assembly of Gondwana. However, the presence of abundant Grenvillian and Neoarchean ages, along with their moderately to highly rounded shapes, indicates a possible sedimentary provenance from exotic continental terrane(s). Considering the potential source areas around the Yangtze block when it was a part of Rodinia or Gondwana, we suggest that the source of these early Paleozoic sediments had typical Gondwana affinities, such as the Himalaya, north India, and Tarim, which is also supported by their stratigraphic similarity, newly published paleomagnetic data, and tectono-thermal events in the northern fragments of Gondwana. This implies that after prolonged subduction in the Neoproterozoic, the northwestern margin of the Yangtze block began to be incorporated into the assembly of Gondwana and then accept sediments from the northern margin of Gondwanaland in a passive continental margin setting.


2021 ◽  
Author(s):  
Bingshuang Zhao ◽  
Xiaoping Long ◽  
et al.

Supplementary Figure S1: Representative cathodoluminescence images of zircons from the northwestern Yangtze block samples; Supplementary Table S1: U–Pb dating results and in situ Lu–Hf isotopic data for detrital zircons from the northwestern Yangtze block samples.


1999 ◽  
Vol 36 (1) ◽  
pp. 23-32 ◽  
Author(s):  
Roberta J Hicks ◽  
Rebecca A Jamieson ◽  
Peter H Reynolds

40Ar/39Ar dates from eight muscovite separates and two whole-rock samples of slate, siltstone, and sandstone provide detrital, metamorphic, and post-metamorphic overprinting ages for the low-grade metamorphic rocks of the Meguma Supergroup in the Mahone Bay region of southern Nova Scotia. Variably reset detrital muscovite ages of 600-550 Ma agree with previously obtained U-Pb dates from detrital zircon. Separates of foliation-parallel muscovite yield precise 40Ar/39Ar ages of 395-388 Ma. Petrographic and metamorphic data indicate that these are metamorphic mica growth ages. The range overlaps with the younger limit of previously reported whole-rock ages (410-380 Ma), but is more tightly constrained. An apparent inconsistency between previous 40Ar/39Ar whole-rock ages as old as 410 Ma and regional deformation that affected sedimentary rocks as young as 385 Ma has been resolved by the younger ages reported here and by recent adjustments to the early Paleozoic time scale which suggest that the Lochkovian to Emsian Torbrook Group was deposited between 419 and 394 Ma. A muscovite plateau age of 376 Ma from one sample may be related to late-stage flexural slip deformation in the Ovens gold district.


2021 ◽  
Author(s):  
Bingshuang Zhao ◽  
Xiaoping Long ◽  
et al.

Supplementary Figure S1: Representative cathodoluminescence images of zircons from the northwestern Yangtze block samples; Supplementary Table S1: U–Pb dating results and in situ Lu–Hf isotopic data for detrital zircons from the northwestern Yangtze block samples.


2018 ◽  
Author(s):  
David H. Malone ◽  
◽  
Alex Konstantinou ◽  
John P. Craddock

2020 ◽  
Vol 12 (1) ◽  
pp. 25-43
Author(s):  
Yuan Peng ◽  
Yongsheng Zhang ◽  
Eenyuan Xing ◽  
Linlin Wang

AbstractThe Zhongwunongshan Structural Belt (ZWSB) locates between the Olongbruk Microblock of North Qaidam and the South Qilian Block in China, and it has important implication for understanding the tectonic significance of North Qaidam. Nowadays, there are few discussion on the Caledonian tectonothermal events of the Zhongwunongshan Structural Belt, and there exist different opinions on provenance and tectonic environment of the Zhongwunongshan Group in the ZWSB and its adjacent North Qaidam. In this study, a comprehensive analysis of the detrital zircon geochronological research was carried out on the Zhongwunongshan Group. The detrital zircon U-Pb dating results showed two major populations. The first was Neoproterozoic (966-725 Ma) with a ∈Hf(t) = −15.9 to 9.5, and the other was late Early Paleozoic (460-434Ma) with a ∈Hf(t) = −9.6 to −3.1. In combination with previous research, the dominated provenances were found to be the Neoproterozoic granitic gneiss of the Yuqia-Shaliuhe HP-UHP metamorphic belt and the late Early Paleozoic granite of the Tanjianshan ophiolite-volcanic arc belt in North Qaidam. The Zhongwunongshan Group was deposited in the back-arc sedimentary basin related to the Caledonian collisional orogeny during Middle Silurian-Early Devonian (434-407.9 Ma).


2004 ◽  
Vol 41 (1) ◽  
pp. 103-125 ◽  
Author(s):  
Nathan T Petersen ◽  
Paul L Smith ◽  
James K Mortensen ◽  
Robert A Creaser ◽  
Howard W Tipper

Jurassic sedimentary rocks of southern to central Quesnellia record the history of the Quesnellian magmatic arc and reflect increasing continental influence throughout the Jurassic history of the terrane. Standard petrographic point counts, geochemistry, Sm–Nd isotopes and detrital zircon geochronology, were employed to study provenance of rocks obtained from three areas of the terrane. Lower Jurassic sedimentary rocks, classified by inferred proximity to their source areas as proximal or proximal basin are derived from an arc source area. Sandstones of this age are immature. The rocks are geochemically and isotopically primitive. Detrital zircon populations, based on a limited number of analyses, have homogeneous Late Triassic or Early Jurassic ages, reflecting local derivation from Quesnellian arc sources. Middle Jurassic proximal and proximal basin sedimentary rocks show a trend toward more evolved mature sediments and evolved geochemical characteristics. The sandstones show a change to more mature grain components when compared with Lower Jurassic sedimentary rocks. There is a decrease in εNdT values of the sedimentary rocks and Proterozoic detrital zircon grains are present. This change is probably due to a combination of two factors: (1) pre-Middle Jurassic erosion of the Late Triassic – Early Jurassic arc of Quesnellia, making it a less dominant source, and (2) the increase in importance of the eastern parts of Quesnellia and the pericratonic terranes, such as Kootenay Terrane, both with characteristically more evolved isotopic values. Basin shale environments throughout the Jurassic show continental influence that is reflected in the evolved geochemistry and Sm–Nd isotopes of the sedimentary rocks. The data suggest southern Quesnellia received material from the North American continent throughout the Jurassic but that this continental influence was diluted by proximal arc sources in the rocks of proximal derivation. The presence of continent-derived material in the distal sedimentary rocks of this study suggests that southern Quesnellia is comparable to known pericratonic terranes.


Sign in / Sign up

Export Citation Format

Share Document