ANALYSIS OF MEASURED THALASSINOIDES ISP. DIAMETERS ACROSS THE CRETACEOUS-PALEOGENE BOUNDARY AT SEWELL, NJ (USA) USING GAUSSIAN CURVE-FITTING

2018 ◽  
Author(s):  
David E. Grandstaff ◽  
◽  
Logan A. Wiest ◽  
Ilya V. Buynevich ◽  
Dennis O. Terry
Keyword(s):  
2012 ◽  
Vol 19 (2) ◽  
pp. 381-394
Author(s):  
José Pereira ◽  
Octavian Postolache ◽  
Pedro Girão

Using A Segmented Voltage Sweep Mode and A Gaussian Curve Fitting Method to Improve Heavy Metal Measurement System PerformanceThis paper presents a voltammetric segmented voltage sweep mode that can be used to identify and measure heavy metals' concentrations. The proposed sweep mode covers a set of voltage ranges that are centered around the redox potentials of the metals that are under analysis. The heavy metal measurement system can take advantage of the historical database of measurements to identify the metals with higher concentrations in a given geographical area, and perform a segmented sweep around predefined voltage ranges or, alternatively, the system can perform a fast linear voltage sweep to identify the voltammetric current peaks and then perform a segmented voltage sweep around the set of voltages that are associated with the voltammetric current peaks. The paper also includes the presentation of two auto-calibration modes that can be used to improve system's reliability and proposes the usage of a Gaussian curve fitting of voltammetric data to identify heavy metals and to evaluate their concentrations. Several simulation and experimental results, that validate the theoretical expectations, are also presented in the paper.


Author(s):  
Jaclyn E. Johnson ◽  
Jeffrey D. Naber ◽  
Seong-Young Lee

Quantifying fuel spray properties including penetration, cone angle, and vaporization processes sheds light on fuel-air mixing phenomenon, which governs subsequent combustion and emissions formation in diesel engines. Accurate experimental determination of these spray properties is a challenge but imperative to validate computational fluid dynamic (CFD) models for combustion prediction. This study proposes a new threshold independent method for determination of spray cone angle when using Mie back-scattering optical diagnostics to visualize diesel sprays in an optically accessible constant volume vessel. Test conditions include the influence of charge density (17.6 and 34.9 kg/m3) at 1990 bar injection pressure, and the influence of injection pressure (990, 1370, and 1980 bar) at a charge density of 34.8 kg/m3 on diesel fuel spray formation from a multi-hole injector into nitrogen at a temperature of 100 °C. Conventional thresholding to convert an image to black and white for processing and determination of cone angle is threshold subjective. As an alternative, an image processing method was developed, which fits a Gaussian curve to the intensity distribution of the spray at radial spray cross-sections and uses the resulting parameters to define the spray edge and hence cone angle. This Gaussian curve fitting methodology is shown to provide a robust method for cone angle determination, accounting for reductions in intensity at the radial spray edge. Results are presented for non-vaporizing sprays using this Gaussian curve fitting method and compared to the conventional thresholding based method.


1981 ◽  
Vol 9 (5) ◽  
pp. 285 ◽  
Author(s):  
R Horstman ◽  
KA Peters ◽  
BM Schindler ◽  
RL Meltzer ◽  
M Bruce Vieth ◽  
...  

1984 ◽  
Vol 12 (1) ◽  
pp. 13 ◽  
Author(s):  
R Horstman ◽  
KA Peters ◽  
RL Meltzer ◽  
MB Vieth ◽  
M Kurita ◽  
...  

Author(s):  
Jaclyn E. Nesbitt ◽  
Jeffrey D. Naber ◽  
Seong-Young Lee

Quantifying fuel spray properties including penetration, cone angle, and vaporization processes sheds light on fuel-air mixing phenomenon which governs subsequent combustion and emissions formation in diesel engines. Accurate experimental determination of these spray properties is a challenge but imperative to validate computational fluid dynamic (CFD) models for combustion prediction. This study proposes a new threshold independent method for determination of spray cone angle when using Mie back-scattering optical diagnostics to visualize diesel sprays in an optically accessible constant volume vessel. Test conditions include the influence of charge density (17.6 and 34.9 kg/m3) at 1990 bar injection pressure, and the influence of injection pressure (990, 1370, and 1980 bar) at a charge density of 34.8 kg/m3 on diesel fuel spray formation from a multi-hole injector into nitrogen at a temperature of 100°C. Conventional thresholding to convert an image to black and white for processing and determination of cone angle is threshold subjective. As an alternative, an image processing method was developed which fits a Gaussian curve to the intensity distribution of the spray at radial spray cross-sections and uses the resulting parameters to define the spray edge and hence cone angle. This Gaussian curve fitting methodology is shown to provide a robust method for cone angle determination, accounting for reductions in intensity at the radial spray edge. Results are presented for non-vaporizing sprays using this Gaussian curve fitting method and compared to the conventional thresholding based method.


Sign in / Sign up

Export Citation Format

Share Document