MAPPING THE WATER TABLE WITH GROUND PENETRATING RADAR IN SHALLOW GROUNDWATER ENVIRONMENTS

2018 ◽  
Author(s):  
Heather Dawn Jameson ◽  
◽  
Dushmantha H. Jayawickreme
Geophysics ◽  
2021 ◽  
pp. 1-77
Author(s):  
diego domenzain ◽  
John Bradford ◽  
Jodi Mead

We exploit the different but complementary data sensitivities of ground penetrating radar (GPR) and electrical resistivity (ER) by applying a multi-physics, multi-parameter, simultaneous 2.5D joint inversion without invoking petrophysical relationships. Our method joins full-waveform inversion (FWI) GPR with adjoint derived ER sensitivities on the same computational domain. We incorporate a stable source estimation routine into the FWI-GPR.We apply our method in a controlled alluvial aquifer using only surface acquired data. The site exhibits a shallow groundwater boundary and unconsolidated heterogeneous alluvial deposits. We compare our recovered parameters to individual FWI-GPR and ER results, and to log measurements of capacitive conductivity and neutron-derived porosity. Our joint inversion provides a more representative depiction of subsurface structures because it incorporates multiple intrinsic parameters, and it is therefore superior to an interpretation based on log data, FWI-GPR, or ER alone.


Geophysics ◽  
1998 ◽  
Vol 63 (4) ◽  
pp. 1310-1317 ◽  
Author(s):  
Steven J. Cardimona ◽  
William P. Clement ◽  
Katharine Kadinsky‐Cade

In 1995 and 1996, researchers associated with the US Air Force’s Phillips and Armstrong Laboratories took part in an extensive geophysical site characterization of the Groundwater Remediation Field Laboratory located at Dover Air Force Base, Dover, Delaware. This field experiment offered an opportunity to compare shallow‐reflection profiling using seismic compressional sources and low‐frequency ground‐penetrating radar to image a shallow, unconfined aquifer. The main target within the aquifer was the sand‐clay interface defining the top of the underlying aquitard at 10 to 14 m depth. Although the water table in a well near the site was 8 m deep, cone penetration geotechnical data taken across the field do not reveal a distinct water table. Instead, cone penetration tests show a gradual change in electrical properties that we interpret as a thick zone of partial saturation. Comparing the seismic and radar data and using the geotechnical data as ground truth, we have associated the deepest coherent event in both reflection data sets with the sand‐clay aquitard boundary. Cone penetrometer data show the presence of a thin lens of clays and silts at about 4 m depth in the north part of the field. This shallow clay is not imaged clearly in the low‐frequency radar profiles. However, the seismic data do image the clay lens. Cone penetrometer data detail a clear change in the soil classification related to the underlying clay aquitard at the same position where the nonintrusive geophysical measurements show a change in image character. Corresponding features in the seismic and radar images are similar along profiles from common survey lines, and results of joint interpretation are consistent with information from geotechnical data across the site.


2020 ◽  
Vol 12 (1) ◽  
pp. 25
Author(s):  
Curt D. Peterson ◽  
Harry M. Jol ◽  
David Percy ◽  
Robert Perkins

Fluvial-tidal wetlands in the Ni-les’tun Unit (~200 hectares) of the Bandon Marsh, Coquille Estuary, Oregon, were analyzed for shallow aquifer conditions that could influence surface water-qualities in reconstructed marsh, pond, and discharge/tidal channels. The wetlands were surveyed for pre-historic channel features, depth to groundwater surface (GWS), and subsurface salinity intrusion by ground penetrating radar (GPR) in 50 profiles, totaling 11.1 km in track line distance. Only small flood-discharge/tidal channel features (<10 m width and 1–2 m depth) were recorded in the interior floodplain areas. GWS reflections were observed at 0.5–2.0 depth, where the GPR signal was not obscured by localized salinity intrusion (~0.5 km landward distance) from the adjacent Coquille Estuary channel. Top-sealed piezometers (1.5–2.0 m depth) were installed at 10 sites, where in-situ groundwaters were monitored for temperature (8.5–16.5° C), conductivity (<100–18,800 μS cm-1), and pH (2.5–7.8) on a seasonal basis. Dissolved oxygen was semi-quantitatively measured (ChemSticks) at some sites, and all sites were monitored (fall, winter, summer) for GWS level. Low dissolved oxygen (DO <1 ppm) at four sites was of particular concern for potential discharge into small channels that were to be constructed for juvenile salmonid nursery habitat. The horizontal and vertical asymmetries of conductivity (salinity), used as a conservative groundwater source tracer, and measured GWS elevation trends (gradients) led to a four-part flow model for shallow groundwater supply in the Ni-les’tun floodplain. Freshwater supplied, in part, by hillslope discharge contributes to low pH and low DO water quality in the shallow aquifer. Saline water, supplied by subsurface salinity intrusion and evaporative capillary rise, could introduce salinity toxicity to isolated (stagnant) surface ponds. Following construction of a dense channel network (2009–2011) by the Bandon Marsh National Wildlife Refuge, selected Ni-les’tun channel waters (13 sites) were monitored (2011-2012) for resulting water-quality. The tidally-connected channels generally showed improved water-quality relative to groundwater in some nearby piezometer sites. However, low-quality groundwater supply compromised some channel reaches (DO ~2.0–4.7 ppm) that depended on groundwater recharge from hillslope discharge during either summer or winter conditions.


1992 ◽  
Vol 35 (4) ◽  
pp. 1161-1166 ◽  
Author(s):  
M. C. Smith ◽  
G. Vellidis ◽  
D. L. Thomas ◽  
M. A. Breve

2017 ◽  
Author(s):  
Sharafeldin M. Sharafeldin ◽  
Khalid S. Essa ◽  
Mohamed A. S. Youssef ◽  
Zein E. Diab

Abstract. Geophysical studies were performed along selected locations across the Pyramids Plateau to investigate the groundwater table and the near aquifer, which harmfully affected the existed monuments of the Giza Pyramids and Sphinx. Electrical Resistivity Imaging (ERI), Shallow Seismic Refraction (SSR) and Ground Penetrating Radar (GPR) techniques were carried out along selected profiles in the plateau. Ten ERI, twenty six SSR and nineteen GPR profiles were performed at the sites. The ERI survey shows that, the groundwater table is at elevations varying from 13 to 18 m above the sea level (asl) and low resistivity values near the surface at the Great Sphinx. ERI profiles, which were applied southeast of the Middle Pyramid (Khafre), show high resistivity values near the surface, and water table is located at elevations ranging from 22 to 40 m asl, while the ERI profiles conducted south of Menkaure, show almost high resistivity near the surface. The groundwater table is located at elevations ranging between 45 and 58 m asl. The aquifer layer shows electrical resistivities ranging between 10 and 50 Ohm.m. The considerable high change in the groundwater table is due to the rapid increases of topography from the Great Sphinx towards the Small Pyramids (Menkaure), where this part looks-like a scarp. The SSR Survey is transmitted to know the different velocities and types of the layers, which can help in knowing the saturated layers in the area. The GPR Survey is performed to delineate the water table, which gives good matching with the ERI results.


2021 ◽  
Author(s):  
◽  
Kolja Schaller

<p>The movement of water through temperate glaciers is important for understanding fundamental issues within glaciology. These include glacier induced floods, glacier dynamics and run-off prediction. Traditional englacial hydrology is thought to consist of interconnected tubular channels that merge down-glacier and drain through the glacier to the bed. However, englacial hydrology is much debated as the links between the glacier surface and bed are not well understood. Ground penetrating radar (GPR) is a geophysical tool that is well suited for studying glaciated areas. Recent ice coring attempts in New Zealand’s temperate alpine glaciers were not successful in coring to bedrock due to the interception of water at depth. This highlights the need for a better understanding of the englacial hydrology of temperate systems. This study investigates the englacial hydrology at Annette Plateau where on three occasions the interception of water has prevented successful coring to the glacier bed. Ground penetrating radar was used to conduct two high-resolution surveys on Annette Plateau in early spring 2011 and early summer 2011. Across-glacier profiles were acquired at 20 m spacing to enable tracking of englacial reflectors between profiles. Models of temperate englacial features were made to aid feature identification within radar profiles. Radar data is compared with density, stratigraphy and chemistry results from the 45 m ice core obtained at Annette Plateau in winter 2009. The early-summer survey indicates an increase in the glacier’s water content compared with the early-spring survey. Englacial reflectors show evidence of (a) spatially continuous englacial conduits, (b) the formation of a water table feature which shallows down glacier, and (c) detailed bedrock topography. Hydropotential surfaces, calculated for the water table and bedrock horizons, show the direction of water flow. Ice core chemistry shows a correlation between the depth of the water table and a significant hiatus indicated by tritium dating. We infer that an extensive water table has formed on an old melt surface where ice from approximately 1930-1991 has been removed. This water table responds to seasonal temperature changes and hydrological inputs.</p>


Sign in / Sign up

Export Citation Format

Share Document