shallow aquifer
Recently Published Documents


TOTAL DOCUMENTS

570
(FIVE YEARS 176)

H-INDEX

35
(FIVE YEARS 3)

2021 ◽  
Vol 14 (6) ◽  
pp. 3241
Author(s):  
Cleber De Jesus Santos ◽  
Luca Lämmle ◽  
Vinicius Borges Moreira ◽  
Jefferson De Lima Picanço ◽  
Ronaldo Luiz Mincato ◽  
...  

Diversas formas de uso e ocupação em áreas urbanas tem ocasionado impactos ambientais negativos em diferentes escalas, sendo um deles a degradação dos recursos hídricos, que tem suscitado novas discussões sobre mecanismos de alteração da água subterrânea rasa. A proposição de estratégias metodológicas eficientes a partir da identificação e dimensionamento de características hidroquímicas da água em determinado espaço geográfico, consiste em desafio oportuno a colaborar para a conservação e uso adequado. Diante desse contexto, o objetivo do trabalho é analisar a qualidade da água no aquífero raso em área urbana Campos dos Goytacazes/RJ, correlacionando com a influência de estruturas urbanas nessa dinâmica. Foram coletadas e analisadas amostras de água de 15 poços, além de dados potenciométricos, a fim de correlacionar fatores como: qualidade da água, tipo de uso por parte da população, influência do cemitério, e hidrodinâmica subsuperficial. Tais poços foram previamente espacializados, seguido da coleta e armazenamento das amostras, análise em laboratório, e interpretação a partir das diferentes variáveis que compuseram o quadro síntese para análise simplificada. Em adição, foi elaborado mapa potenciométrico a partir dos níveis freáticos encontrados, permitindo compilar os parâmetros elencados. Os resultados sugerem que o lençol freático é consideravelmente raso na área estudada, tornando os recursos hídricos mais vulneráveis. Por se tratar de uma área de múltiplos usos, como residencial, agrícola, comercial, além da presença de um cemitério, acaba por expor a região a maiores riscos de contaminação. Destaca-se que, conforme verificado em trabalho de campo, a região possui potenciais agentes poluidores, levando a um maior número de substâncias contaminantes que podem ser liberadas neste ambiente. Adicionalmente, constatou-se alteração dos padrões biológicos, físicos e químicos, com contaminações acima do valor máximo permitido em lei para os seguintes elementos: Fe, Al, Pb, Mn e P, além da presença de Escherichia coli (E. Coli).       Assessment of water quality in a shallow aquifer in Campos dos Goytacazes, Rio de Janeiro, Brazil A B S T R A C TVarious forms of use and occupation in urban areas have caused negative environmental impacts at different scales, one of them being the degradation of water resources, which has given rise to new discussions on mechanisms for altering shallow groundwater. The proposition of efficient methodological strategies based on the identification and dimensioning of the hydrochemical characteristics of water in a given geographic space is an opportune challenge to collaborate for the conservation and proper use. In this context, the objective of this work is to analyze the water quality in the shallow aquifer in urban area Campos dos Goytacazes/RJ, correlating with the influence of urban structures in this dynamic. Water from 15 wells were collected and analyzed, in addition to potentiometric data, in order to correlate factors such as: water quality, type of use by the population, influence of the cemetery, and subsurface hydrodynamics. Such wells were previously spatialized, followed by collection and storage of aggregates, laboratory analysis, and interpretation based on the different variables that made up the synthetic framework for simplified analysis. In addition, a potentiometric map was drawn up from the groundwater levels found, allowing for the compilation of the listed parameters. The results obtained that the water table is considerably shallow in the studied area, making water resources more vulnerable. As it is an area with multiple uses, such as residential, agricultural, commercial, in addition to the presence of a cemetery, it ends up exposing the region to greater risks of contamination. It is noteworthy that, as verified in field work, the region has potential polluting agents, leading to a greater number of contaminants that can be released into this environment. Additionally, there was a change in biological, physical and chemical standards, with contamination above the maximum value allowed by law for the following elements: Fe, Al, Pb, Mn and P, in addition to the presence of Escherichia coli (E. Coli).Keywords: Hydrochemistry; Hydrodynamic; Shallow Aquifer; Contamination.


Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 33
Author(s):  
Jeff D. Pepin ◽  
Andrew J. Robertson ◽  
Shari A. Kelley

Freshwater scarcity has raised concerns about the long-term availability of the water supplies within the transboundary Mesilla (United States)/Conejos-Médanos (Mexico) Basin in Texas, New Mexico, and Chihuahua. Analysis of legacy temperature data and groundwater flux estimates indicates that the region’s known geothermal systems may contribute more than 45,000 tons of dissolved solids per year to the shallow aquifer system, with around 8500 tons of dissolved solids being delivered from localized groundwater upflow zones within those geothermal systems. If this salinity flux is steady and eventually flows into the Rio Grande, it could account for 22% of the typical average annual cumulative Rio Grande salinity that leaves the basin each year—this salinity proportion could be much greater in times of low streamflow. Regional water level mapping indicates upwelling brackish waters flow towards the Rio Grande and the southern part of the Mesilla portion of the basin with some water intercepted by wells in Las Cruces and northern Chihuahua. Upwelling waters ascend from depths greater than 1 km with focused flow along fault zones, uplifted bedrock, and/or fractured igneous intrusions. Overall, this work demonstrates the utility of using heat as a groundwater tracer to identify salinity sources and further informs stakeholders on the presence of several brackish upflow zones that could notably degrade the quality of international water supplies in this developed drought-stricken region.


2021 ◽  
Vol 9 ◽  
Author(s):  
Wenzhen Yuan ◽  
Dailei Zhang ◽  
Yi Zhang ◽  
Jun Gao ◽  
Tongzhe Liu ◽  
...  

The sustainable development of a shallow aquifer geothermal reservoir is strongly affected by the reinjection–production strategy. However, the reinjection–production strategy optimization of a small-scale exploitation unit with tens of meters of well spacing is site specific and has not yet been fulfilled. This study numerically investigates sustainable heat extraction based on various reinjection–production strategies which were conducted in a single-phase aquitard–aquifer geothermal system in Huailai County, Hebei Province, China. The response of the water level and production temperature is mainly discussed. The numerical results show that production without reinjection induces the highest production temperature and also the water level drawdown. Although reinjection in a single doublet well system is conducive to the control of water level drawdown, the introduction of the thermal breakthrough problem causes a decrease in the production temperature. The thermal breakthrough and sustainability of geothermal reservoirs highly depend on the well spacing between the production and reinjection wells, especially for the small-scale field. Therefore, a large well spacing is suggested. A multi-well system facilitates the control of water level drawdown while bringing intensive well interference and thermal breakthrough. Large spacing between the production and reinjection wells is also the basic principle for the design of the multi-well system. A decrease in openhole length leads to an increase in the production temperature and output thermal power. An increase in the production rate affects the thermal breakthrough highly and shortens the lifetime of the geothermal system. Furthermore, the extracted thermal energy is highly affected by the reduction in the reinjection temperature. The results in this study can provide references to achieve sustainable geothermal exploitation in small-scale geothermal reservoirs.


Author(s):  
Jie Ma ◽  
Song Chen ◽  
Songbao Feng ◽  
Diandian Ding

Abstract The present study focuses on the shallow phreatic aquifer (SA) and the upper confined aquifer (CA) developed in Cenozoic loose strata, which are the major regional groundwater resources for drinking, irrigation, industry and other water-related activities. Seven samples from SA and seventeen samples from CA were analyzed to depict the hydrochemical characteristics, categorize the hydrochemical facies, evaluate the hydraulic connectivity, and appraise the drinking water and irrigation water quality. The abundance of cations is Na+ > Ca2+ > Mg2+ > K+ and the anions is HCO3− > SO42− > Cl− in both aquifers, respectively. Groundwater chemistry is controlled by water-rock interactions such as halite dissolution, ion exchange, reverse ion exchange, silicate weathering, and followed by the dissolution of Glauber's salt. The low connectivity and moderate connectivity between these two aquifers has engendered. The majority of the ion concentrations are within the limit for drinking, only one sample from the shallow aquifer are greater than the limit of 250 mg/L, a total of 29% from the shallow unconfined aquifer and 14% from the confined aquifer were not within the limit of 250 mg/L. The sodium absorption ratio (SAR), residual sodium carbonate (RSC) and soluble sodium percentage (%Na) values reveal that all the samples are appropriate for irrigation uses. The the US salinity laboratory (USSL) diagram shows that sixteen CA samples and all the SA samples fall in the C3S1 zone, implying high salinity hazard and low alkalinity hazard.


Author(s):  
Liang He ◽  
Junru Zhang ◽  
Suozhong Chen ◽  
Manqing Hou ◽  
Junyi Chen

Abstract Groundwater recharge is an important factor affecting water circulation. As groundwater has slow seepage, directly observing the seepage velocity and recharge path of groundwater in the aquifer is difficult. Environmental isotope technology has become an important means to clarify the mechanism of groundwater movement and the mechanism by which groundwater recharges from the micro and macro perspectives. The Changwu area of Jiangsu Province was taken as an example to identify the recharge sources of groundwater and the recharge paths of groundwater and surface water by using the measured data of isotopes D, 18O, 34S, and T. The results indicated that the shallow aquifer and the I confined aquifer in the Changwu area are mainly recharged by precipitation and surface lake water. The II confined aquifer along the Yangtze River is recharged by modern precipitation. Moreover, the II confined aquifer in the Henglin area was recharged by the ancient Yangtze River before 4,000 years ago, and no recharge relationship exists now. the recharge condition of the II confined aquifer around the northwest of Gehu Lake is in the climate environment of 8,000 years ago and was caused by the surface depression lake water at that time. Additionally, the concealed limestone aquifer is primarily supplied by the II confined aquifer, while the concealed sandstone aquifer supplies the II confined aquifer. Hence, to find out the recharge conditions of groundwater aquifers based on the environmental isotope is conducive to scientific and reasonable evaluation of groundwater resources and to ensure the sustainable development and utilization of groundwater resources.


2021 ◽  
Vol 53 (3) ◽  
pp. 344-357
Author(s):  
Sehah Sehah ◽  
Hartono Hartono ◽  
Zaroh Irayani ◽  
Urip Nurwijayanto Prabowo

A geoelectric survey using the 1D-electrical resistivity method was applied to design a groundwater aquifer model for the banks of the Serayu River in Sokawera Village, Somagede District, Banyumas Regency, Indonesia. The aim of this research was to identify the characteristics of aquifers in the research area based on resistivity log data. Acquisition, modeling, and interpretation of resistivity data were carried out and the results were lithological logs at seven sounding points. Correlation between the lithological logs resulted in a hydrostratigraphic model. This model is composed of several hydrological units, i.e. shallow aquifer, aquitard, and deep aquifer. The shallow aquifers are composed of sandy clay (10.81-18.21 Wm) and clayey sand (3.04-7.43 Wm) with a depth of groundwater from the water table to 27.51 m. The deep aquifers are composed of sandstone with variation of porosity (2.24-12.04 Wm) at a depth of more than 54.98 m. Based on this model, potential shallow aquifers were estimated to be at sounding points Sch-5, Sch-6, and Sch-7. This hydrostratigraphic model shows that the two types of aquifers are separated by an aquitard layer, allowing groundwater infiltration from the shallow aquifer to the deep aquifer and vice versa. Moreover, the Serayu riverbanks in this research area are estimated to be a groundwater discharge area.


2021 ◽  
Vol 944 (1) ◽  
pp. 012061
Author(s):  
A Chowdhury ◽  
A Naz ◽  
S Bhattacharyya ◽  
P Sanyal

Abstract Sundarban is the world’s largest transboundary contiguous mangrove ecosystem and home of the mangrove dwelling tigers. Sea level rise is destabilizing this ecosystem which is experiencing a rising salinity in surface and ground waters (shallow aquifer). In this study ground water salinity was investigated across Sundarbans and surface water seasonal salinity changes has been investigated along East-west gradient in the region. Statistically significant seasonal as well as spatial variations has been observed in the surface water salinity pattern across this gradient. The post monsoon average surface water salinity was 10.58 ppt while in pre-monsoon it was 27.31 ppt. Ground water salinity was lowest (0.95 ppt) in monsoon while highest in the pre-monsoon season (7.4 ppt). There was a clear east-west gradient in the surface salinity distribution across the delta, indicating a source of fresh water in the eastern corner, bordering Bangladesh. Increasing salinity indicate impact on mangrove diversity with salinity sensitive species (Heritiera fomes, Nypa fruticans) limited to the eastern corner while salinity resilient species (Avicennia marina and Phoenix paludosa) were dominating the western and central part of the Indian Sundarbans. Mangrove associate Acanthus ilicifolius and Heliotropium currasavicum were abundant in the forests under anthropogenic disturbances.


2021 ◽  
Vol 11 (23) ◽  
pp. 11144
Author(s):  
Lilia Peñafiel ◽  
Francisco Javier Alcalá ◽  
Javier Senent-Aparicio

As in other large Andean cities, the population in the Metropolitan District of Quito (MDQ) in northern Ecuador is growing, and groundwater is becoming essential to meet the increasing urban water demand. Quito’s Public Water Supply Company (EPMAPS) is promoting groundwater research for sustainable water supply, and geophysical prospecting surveys are used to define aquifer geometry and certain transient groundwater features. This paper examines the usefulness of existing geophysical prospecting surveys in groundwater research in the MDQ. A database was built using 23 representative geophysical prospecting surveys compiled from EPMAPS’ public repository, official geotechnical research reports, and the scientific literature. Fifteen EPMAPS-promoted surveys used near-surface electrical techniques (seven used electrical resistivity tomography and eight used vertical electrical sounding) to explore Holocene and Pleistocene sedimentary and volcano-sedimentary formations in the 25–500-m prospecting depth range, some of which form shallow aquifers used for water supply. Four other surveys used near-surface seismic techniques (refraction microtremor) for geotechnical research in civil works. These surveys have been reinterpreted to define shallow aquifer geometry. Finally, four surveys compiled from the scientific literature used electromagnetic techniques (magnetotelluric sounding and other very low-frequency methods) to explore Holocene to late Pliocene formations, some of which form thick regional aquifers catalogued as the larger freshwater reservoirs in the MDQ. However, no geophysical prospecting surveys exploring the complete saturated thickness of the Pliocene aquifers could be compiled. Geophysical prospecting surveys with greater penetration depth are proposed to bridge this research gap, which prevents the accurate assessment of the renewable groundwater fraction of the regional aquifers in the MDQ that can be exploited sustainably.


Sign in / Sign up

Export Citation Format

Share Document