scholarly journals “Missing links” for the long-lived Macdonald and Arago hotspots, South Pacific Ocean

Geology ◽  
2021 ◽  
Author(s):  
L. Buff ◽  
M.G. Jackson ◽  
K. Konrad ◽  
J.G. Konter ◽  
M. Bizimis ◽  
...  

The Cook-Austral volcanic lineament extends from Macdonald Seamount (east) to Aitutaki Island (west) in the South Pacific Ocean and consists of hotspot-related volcanic islands, seamounts, and atolls. The Cook-Austral volcanic lineament has been characterized as multiple overlapping, age-progressive hotspot tracks generated by at least two mantle plumes, including the Arago and Macdonald plumes, which have fed volcano construction for ~20 m.y. The Arago and Macdonald hotspot tracks are argued to have been active for at least 70 m.y. and to extend northwest of the Cook-Austral volcanic lineament into the Cretaceous-aged Tuvalu-Gilbert and Tokelau Island chains, respectively. Large gaps in sampling exist along the predicted hotspot tracks, complicating efforts seeking to show that the Arago and Macdonald hotspots have been continuous, long-lived sources of hotspot volcanism back into the Cretaceous. We present new major- and trace-element concentrations and radiogenic isotopes for three seamounts (Moki, Malulu, Dino) and one atoll (Rose), and new clinopyroxene 40Ar/39Ar ages for Rose (24.81 ± 1.02 Ma) and Moki (44.53 ± 10.05 Ma). All volcanoes are located in the poorly sampled region between the younger Cook-Austral and the older, Cretaceous portions of the Arago and Macdonald hotspot tracks. Absolute plate motion modeling indicates that the Rose and Moki volcanoes lie on or near the reconstructed traces of the Arago and Macdonald hotspots, respectively, and the 40Ar/39Ar ages for Rose and Moki align with the predicted age progression for the Arago (Rose) and Macdonald (Moki) hotspots, thereby linking the younger Cook-Austral and older Cretaceous portions of the long-lived (>70 m.y.) Arago and Macdonald hotspot tracks.

Tellus ◽  
1974 ◽  
Vol 26 (1-2) ◽  
pp. 136-142 ◽  
Author(s):  
J. W. Swinnerton ◽  
R. A. Lamontagne

2021 ◽  
Vol 169 ◽  
pp. 112535
Author(s):  
Martin Thiel ◽  
Bárbara Barrera Lorca ◽  
Luis Bravo ◽  
Iván A. Hinojosa ◽  
Hugo Zeballos Meneses

2018 ◽  
Vol 15 (12) ◽  
pp. 3893-3908 ◽  
Author(s):  
Dina Spungin ◽  
Natalia Belkin ◽  
Rachel A. Foster ◽  
Marcus Stenegren ◽  
Andrea Caputo ◽  
...  

Abstract. The fate of diazotroph (N2 fixers) derived carbon (C) and nitrogen (N) and their contribution to vertical export of C and N in the western tropical South Pacific Ocean was studied during OUTPACE (Oligotrophy to UlTra-oligotrophy PACific Experiment). Our specific objective during OUTPACE was to determine whether autocatalytic programmed cell death (PCD), occurring in some diazotrophs, is an important mechanism affecting diazotroph mortality and a factor regulating the vertical flux of organic matter and, thus, the fate of the blooms. We sampled at three long duration (LD) stations of 5 days each (LDA, LDB and LDC) where drifting sediment traps were deployed at 150, 325 and 500 m depth. LDA and LDB were characterized by high chlorophyll a (Chl a) concentrations (0.2–0.6 µg L−1) and dominated by dense biomass of the filamentous cyanobacterium Trichodesmium as well as UCYN-B and diatom–diazotroph associations (Rhizosolenia with Richelia-detected by microscopy and het-1 nifH copies). Station LDC was located at an ultra-oligotrophic area of the South Pacific gyre with extremely low Chl a concentration (∼ 0.02 µg L−1) with limited biomass of diazotrophs predominantly the unicellular UCYN-B. Our measurements of biomass from LDA and LDB yielded high activities of caspase-like and metacaspase proteases that are indicative of PCD in Trichodesmium and other phytoplankton. Metacaspase activity, reported here for the first time from oceanic populations, was highest at the surface of both LDA and LDB, where we also obtained high concentrations of transparent exopolymeric particles (TEP). TEP were negatively correlated with dissolved inorganic phosphorus and positively coupled to both the dissolved and particulate organic carbon pools. Our results reflect the increase in TEP production under nutrient stress and its role as a source of sticky carbon facilitating aggregation and rapid vertical sinking. Evidence for bloom decline was observed at both LDA and LDB. However, the physiological status and rates of decline of the blooms differed between the stations, influencing the amount of accumulated diazotrophic organic matter and mass flux observed in the traps during our experimental time frame. At LDA sediment traps contained the greatest export of particulate matter and significant numbers of both intact and decaying Trichodesmium, UCYN-B and het-1 compared to LDB where the bloom decline began only 2 days prior to leaving the station and to LDC where no evidence for bloom or bloom decline was seen. Substantiating previous findings from laboratory cultures linking PCD to carbon export in Trichodesmium, our results from OUTPACE indicate that nutrient limitation may induce PCD in high biomass blooms such as displayed by Trichodesmium or diatom–diazotroph associations. Furthermore, PCD combined with high TEP production will tend to facilitate cellular aggregation and bloom termination and will expedite vertical flux to depth.


2008 ◽  
Vol 5 (2) ◽  
pp. 323-338 ◽  
Author(s):  
P. Raimbault ◽  
N. Garcia

Abstract. One of the major objectives of the BIOSOPE cruise, carried out on the R/V Atalante from October-November 2004 in the South Pacific Ocean, was to establish productivity rates along a zonal section traversing the oligotrophic South Pacific Gyre (SPG). These results were then compared to measurements obtained from the nutrient – replete waters in the Chilean upwelling and around the Marquesas Islands. A dual 13C/15N isotope technique was used to estimate the carbon fixation rates, inorganic nitrogen uptake (including dinitrogen fixation), ammonium (NH4) and nitrate (NO3) regeneration and release of dissolved organic nitrogen (DON). The SPG exhibited the lowest primary production rates (0.15 g C m−2 d−1), while rates were 7 to 20 times higher around the Marquesas Islands and in the Chilean upwelling, respectively. In the very low productive area of the SPG, most of the primary production was sustained by active regeneration processes that fuelled up to 95% of the biological nitrogen demand. Nitrification was active in the surface layer and often balanced the biological demand for nitrate, especially in the SPG. The percentage of nitrogen released as DON represented a large proportion of the inorganic nitrogen uptake (13–15% in average), reaching 26–41% in the SPG, where DON production played a major role in nitrogen cycling. Dinitrogen fixation was detectable over the whole study area; even in the Chilean upwelling, where rates as high as 3 nmoles l−1 d−1 were measured. In these nutrient-replete waters new production was very high (0.69±0.49 g C m−2 d−1) and essentially sustained by nitrate levels. In the SPG, dinitrogen fixation, although occurring at much lower daily rates (≈1–2 nmoles l−1 d−1), sustained up to 100% of the new production (0.008±0.007 g C m−2 d−1) which was two orders of magnitude lower than that measured in the upwelling. The annual N2-fixation of the South Pacific is estimated to 21×1012g, of which 1.34×1012g is for the SPG only. Even if our "snapshot" estimates of N2-fixation rates were lower than that expected from a recent ocean circulation model, these data confirm that the N-deficiency South Pacific Ocean would provide an ideal ecological niche for the proliferation of N2-fixers which are not yet identified.


Sign in / Sign up

Export Citation Format

Share Document