scholarly journals Morphologic signatures of autogenic waterfalls: A case study in the San Gabriel Mountains, California

Geology ◽  
2021 ◽  
Author(s):  
Erika L. Groh ◽  
Joel S. Scheingross

Waterfalls can form due to external perturbation of river base level, lithologic heterogeneity, and internal feedbacks (i.e., autogenic dynamics). While waterfalls formed by lithologic heterogeneity and external perturbation are well documented, there is a lack of criteria with which to identify autogenic waterfalls, thereby limiting the ability to assess the influence of autogenic waterfalls on landscape evolution. We propose that autogenic waterfalls evolve from bedrock bedforms known as cyclic steps and therefore form as a series of steps with spacing and height set primarily by channel slope. We identified 360 waterfalls split between a transient and steady-state portion of the San Gabriel Mountains in California, USA. Our results show that while waterfalls have different spatial distributions in the transient and steady-state landscapes, waterfalls in both landscapes tend to form at slopes >3%, coinciding with the onset of Froude supercritical flow, and the waterfall height to spacing ratio in both landscapes increases with slope, consistent with cyclic step theory and flume experiments. We suggest that in unglaciated mountain ranges with relatively uniform rock strength, individual waterfalls are predominately autogenic in origin, while the spatial distribution of waterfalls may be set by external perturbations.

2016 ◽  
Author(s):  
Jon D. Pelletier

Abstract. Discerning how tectonic uplift rates, climate, soil production rates, erosion rates, and topography interact is essential for understanding the geomorphic evolution of mountain ranges. Perhaps the key independent variable in this interaction is the potential soil production rate, i.e., the upper limit at which bedrock can be converted into transportable material. In this paper I document the controls on potential soil production rates using the San Gabriel Mountains (SGM) of California as a case study. The prevailing conceptual model for the geomorphic evolution of the SGM is that tectonic uplift rates control topographic steepness, erosion rates, and potential soil production rates. I test the alternative hypothesis that bedrock damage and microclimate also exert first-order controls on landscape evolution in the SGM via their influence on potential soil production rates. I develop an empirical equation that relates potential soil production rates in the SGM to a bedrock damage index that depends on the local density of faults and a microclimatic index that relates to aspect-driven variations in vegetation cover and wildfire severity and frequency. Assuming a balance between soil production and erosion rates at the hillslope scale, I further show that observed trends in topographic steepness can be reproduced using the empirical equation for potential soil production rates. The results suggest that tectonic uplift rates, bedrock damage, and microclimate play co-equal and interacting roles in controlling landscape evolution in the SGM and perhaps other tectonically active mountain ranges.


2019 ◽  
Vol 39 (2) ◽  
pp. 262-271
Author(s):  
Yukan Hou ◽  
Yuan Li ◽  
Yuntian Ge ◽  
Jie Zhang ◽  
Shoushan Jiang

Purpose The purpose of this paper is to present an analytical method for throughput analysis of assembly systems with complex structures during transients. Design/methodology/approach Among the existing studies on the performance evaluation of assembly systems, most focus on the system performance in steady state. Inspired by the transient analysis of serial production lines, the state transition matrix is derived considering the characteristics of merging structure in assembly systems. The system behavior during transients is described by an ergodic Markov chain, with the states being the occupancy of all buffers. The dynamic model for the throughput analysis is solved using the fixed-point theory. Findings This method can be used to predict and evaluate the throughput performance of assembly systems in both transient and steady state. By comparing the model calculation results with the simulation results, this method is proved to be accurate. Originality/value This proposed modeling method can depict the throughput performance of assembly systems in both transient and steady state, whereas most exiting methods can be used for only steady-state analysis. In addition, this method shows the potential for the analysis of complex structured assembly systems owing to the low computational complexity.


2000 ◽  
Vol 27 (9) ◽  
pp. 1359-1362 ◽  
Author(s):  
Alan S. Rodger ◽  
Iain J. Coleman ◽  
Mike Pinnock

1994 ◽  
Vol 49 (15) ◽  
pp. 10572-10576 ◽  
Author(s):  
C. H. Lee ◽  
G. Yu ◽  
B. Kraabel ◽  
D. Moses ◽  
V. I. Srdanov

Sign in / Sign up

Export Citation Format

Share Document