throughput analysis
Recently Published Documents


TOTAL DOCUMENTS

1696
(FIVE YEARS 245)

H-INDEX

65
(FIVE YEARS 10)

Author(s):  
Jia Jun Fung ◽  
Karla Blöcher-Juárez ◽  
Anton Khmelinskii

AbstractTandem fluorescent protein timers (tFTs) are versatile reporters of protein dynamics. A tFT consists of two fluorescent proteins with different maturation kinetics and provides a ratiometric readout of protein age, which can be exploited to follow intracellular trafficking, inheritance and turnover of tFT-tagged proteins. Here, we detail a protocol for high-throughput analysis of protein turnover with tFTs in yeast using fluorescence measurements of ordered colony arrays. We describe guidelines on optimization of experimental design with regard to the layout of colony arrays, growth conditions, and instrument choice. Combined with semi-automated genetic crossing using synthetic genetic array (SGA) methodology and high-throughput protein tagging with SWAp-Tag (SWAT) libraries, this approach can be used to compare protein turnover across the proteome and to identify regulators of protein turnover genome-wide.


2022 ◽  
Vol 641 ◽  
pp. 119743
Author(s):  
Jonathan A. Ouimet ◽  
Xinhong Liu ◽  
David J. Brown ◽  
Elvis A. Eugene ◽  
Tylar Popps ◽  
...  

2021 ◽  
Author(s):  
Natalia Anna Szulc ◽  
Zuzanna Mackiewicz ◽  
Janusz M Bujnicki ◽  
Filip Stefaniak

Computational methods play a pivotal role in drug discovery and are widely applied in virtual screening, structure optimization, and compound activity profiling. Over the last decades, almost all the attention in medicinal chemistry has been directed to protein-ligand binding, and computational tools have been created with this target in mind. With novel discoveries of functional RNAs and their possible applications, RNAs have gained considerable attention as potential drug targets. However, the availability of bioinformatics tools for nucleic acids is limited. Here, we introduce fingeRNAt - a software tool for detecting non-covalent interactions formed in complexes of nucleic acids with ligands. The program detects nine types of interactions: (i) hydrogen and (ii) halogen bonds, (iii) cation-anion, (iv) pi-cation, (v) pi-anion, (vi) pi-stacking, (vii) inorganic ion-mediated, (viii) water-mediated, and (ix) lipophilic interactions. However, the scope of detected interactions can be easily expanded using a simple plugin system. In addition, detected interactions can be visualized using the associated PyMOL plugin, which facilitates the analysis of medium-throughput molecular complexes. Interactions are also encoded and stored as a bioinformatics-friendly Structural Interaction Fingerprint (SIFt) - a binary string where the respective bit in the fingerprint is set to 1 if a particular interaction is present and to 0 otherwise. This output format, in turn, enables high-throughput analysis of interaction data using data analysis techniques. We present applications of fingeRNAt-generated interaction fingerprints for visual and computational analysis of RNA-ligand complexes, including analysis of interactions formed in experimentally determined RNA-small molecule ligand complexes deposited in the Protein Data Bank. We propose interaction-based similarity based on fingerprints as an alternative measure to RMSD to recapitulate complexes with similar interactions but different folding. We present an application of molecular fingerprints for the clustering of molecular complexes. This approach can be used to group ligands that form similar binding networks and thus have similar biological properties.


Metabolites ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 789
Author(s):  
Yuzhu Guo ◽  
Michael Forbush ◽  
Thomas R. Covey ◽  
Lucien Ghislain ◽  
Chang Liu

Acoustic ejection mass spectrometry is a novel high-throughput analytical technology that delivers high reproducibility without carryover observed. It eliminates the chromatography step used to separate analytes from matrix components. Fully-automated liquid–liquid extraction is widely used for sample cleanup, especially in high-throughput applications. We introduce a workflow for direct AEMS analysis from phase-separated liquid samples and explore high-throughput analysis from complex matrices. We demonstrate the quantitative determination of fentanyl from urine using this two-phase AEMS approach, with a LOD lower than 1 ng/mL, quantitation precision of 15%, and accuracy better than ±10% over the range of evaluation (1–100 ng/mL). This workflow offers simplified sample preparation and higher analytical throughput for some bioanalytical applications, in comparison to an LC-MS based approach.


2021 ◽  
Vol 132 ◽  
pp. 103526
Author(s):  
Sixiao Gao ◽  
Toyokazu Kobayashi ◽  
Akiko Tajiri ◽  
Jun Ota

2021 ◽  
Vol 2 ◽  
Author(s):  
Beatriz B. Oliveira ◽  
Bruno Veigas ◽  
Pedro Viana Baptista

Nucleic acid amplification technologies (NAATs) have become fundamental tools in molecular diagnostics, due to their ability to detect small amounts of target molecules. Since its development, Polymerase Chain Reaction (PCR) has been the most exploited method, being stablished as the “gold standard” technique for DNA amplification. However, the requirement for different working temperatures leads to the need of a thermocycler machine or complex thermal apparatus, which have been preventing its application in novel integrated devices for single workflow and high throughput analysis. Conversely, isothermal amplification methods have been gaining attention, especially for point-of-care diagnosis and applications. These non-PCR based methods have been developed by mimicking the in vivo amplification mechanisms, while performing the amplification with high sensitivity, selectivity and allowing for high-throughput analysis. These favorable capabilities have pushed forward the implementation and commercialization of several platforms that exploit isothermal amplification methods, mostly against virus, bacteria and other pathogens in water, food, environmental and clinical samples. Nevertheless, the future of isothermal amplification methods is still dependent on achieving technical maturity and broader commercialization of enzymes and reagents.


Sign in / Sign up

Export Citation Format

Share Document