scholarly journals Supplemental Material: Thermochronological transect across the Basin and Range/Rio Grande rift transition: Contrasting cooling histories in contiguous extensional provinces

2021 ◽  
Author(s):  
M.M. Gavel ◽  
et al. ◽  
J. Amato

<div>Table S1: Summary of all of the geochronology (dates and locations) for the samples in this study. Table S2: Thermal history model inputs; Table S3: Apatite fission track data used in HeFTy modeling.<br></div><div><br></div><div><br></div><div><br></div>

2021 ◽  
Author(s):  
M.M. Gavel ◽  
et al. ◽  
J. Amato

<div>Table S1: Summary of all of the geochronology (dates and locations) for the samples in this study. Table S2: Thermal history model inputs; Table S3: Apatite fission track data used in HeFTy modeling.<br></div><div><br></div><div><br></div><div><br></div>


2021 ◽  
Author(s):  
Jennifer Spalding ◽  
Jeremy Powell ◽  
David Schneider ◽  
Karen Fallas

&lt;p&gt;Resolving the thermal history of sedimentary basins through geological time is essential when evaluating the maturity of source rocks within petroleum systems. Traditional methods used to estimate maximum burial temperatures in prospective sedimentary basin such as and vitrinite reflectance (%Ro) are unable to constrain the timing and duration of thermal events. In comparison, low-temperature thermochronology methods, such as apatite fission track thermochronology (AFT), can resolve detailed thermal histories within a temperature range corresponding to oil and gas generation. In the Peel Plateau of the Northwest Territories, Canada, Phanerozoic sedimentary strata exhibit oil-stained outcrops, gas seeps, and bitumen occurrences. Presently, the timing of hydrocarbon maturation events are poorly constrained, as a regional unconformity at the base of Cretaceous foreland basin strata indicates that underlying Devonian source rocks may have undergone a burial and unroofing event prior to the Cretaceous. Published organic thermal maturity values from wells within the study area range from 1.59 and 2.46 %Ro for Devonian strata and 0.54 and 1.83 %Ro within Lower Cretaceous strata. Herein, we have resolved the thermal history of the Peel Plateau through multi-kinetic AFT thermochronology. Three samples from Upper Devonian, Lower Cretaceous and Upper Cretaceous strata have pooled AFT ages of 61.0 &amp;#177; 5.1 Ma, 59.5 &amp;#177; 5.2 and 101.6 &amp;#177; 6.7 Ma, respectively, and corresponding U-Pb ages of 497.4 &amp;#177; 17.5 Ma (MSWD: 7.4), 353.5 &amp;#177; 13.5 Ma (MSWD: 3.1) and 261.2 &amp;#177; 8.5 Ma (MSWD: 5.9). All AFT data fail the &amp;#967;&lt;sup&gt;2&lt;/sup&gt; test, suggesting AFT ages do not comprise a single statistically significant population, whereas U-Pb ages reflect the pre-depositional history of the samples and are likely from various provenances. Apatite chemistry is known to control the temperature and rates at which fission tracks undergo thermal annealing. The r&lt;sub&gt;mro&lt;/sub&gt; parameter uses grain specific chemistry to predict apatite&amp;#8217;s kinetic behaviour and is used to identify kinetic populations within samples. Grain chemistry was measured via electron microprobe analysis to derive r&lt;sub&gt;mro&lt;/sub&gt; values and each sample was separated into two kinetic populations that pass the &amp;#967;&lt;sup&gt;2&lt;/sup&gt; test: a less retentive population with ages ranging from 49.3 &amp;#177; 9.3 Ma to 36.4 &amp;#177; 4.7 Ma, and a more retentive population with ages ranging from 157.7 &amp;#177; 19 Ma to 103.3 &amp;#177; 11.8 Ma, with r&lt;sub&gt;mr0&lt;/sub&gt; benchmarks ranging from 0.79 and 0.82. Thermal history models reveal Devonian strata reached maximum burial temperatures (~165&amp;#176;C-185&amp;#176;C) prior to late Paleozoic to Mesozoic unroofing, and reheated to lower temperatures (~75&amp;#176;C-110&amp;#176;C) in the Late Cretaceous to Paleogene. Both Cretaceous samples record maximum burial temperatures (75&amp;#176;C-95&amp;#176;C) also during the Late Cretaceous to Paleogene. These new data indicate that Devonian source rocks matured prior to deposition of Cretaceous strata and that subsequent burial and heating during the Cretaceous to Paleogene was limited to the low-temperature threshold of the oil window. Integrating multi-kinetic AFT data with traditional methods in petroleum geosciences can help unravel complex thermal histories of sedimentary basins. Applying these methods elsewhere can improve the characterisation of petroleum systems.&lt;/p&gt;


2021 ◽  
Author(s):  
Tatyana Bagdasaryan ◽  
Roman Veselovskiy ◽  
Viktor Zaitsev ◽  
Anton Latyshev

&lt;p&gt;The largest continental igneous province, the Siberian Traps, was formed within the Siberian platform at the Paleozoic-Mesozoic boundary, ca. 252 million years ago. Despite the continuous and extensive investigation of the duration and rate of trap magmatism on the Siberian platform, these questions are still debated. Moreover, the post-Paleozoic thermal history of the Siberian platform is almost unknown. This study aims to reconstruct the thermal history of the Siberian platform during the last 250 Myr using the low-temperature thermochronometry. We have studied intrusive complexes from different parts of the Siberian platform, such as the Kotuy dike, the Odikhincha, Magan and Essey ultrabasic alkaline massifs, the Norilsk-1 and Kontayskaya intrusions, and the Padunsky sill. We use apatite fission-track (AFT) thermochronology to assess the time since the rocks were cooled below 110&amp;#8451;. Obtained AFT ages (207-173 Ma) are much younger than available U-Pb and Ar/Ar ages of the traps. This pattern might be interpreted as a long cooling of the studied rocks after their emplacement ca. 250 Ma, but this looks quite unlikely because contradicts to the geological observations. Most likely, the rocks were buried under a thick volcanic-sedimentary cover and then exhumed and cooled below 110&amp;#8451; ca. 207-173 Ma. Considering the increased geothermal gradient up to 50&amp;#8451;/km at that times, we can estimate the thickness of the removed overlying volcanic-sedimentary cover up to 207-173 Ma as about 2-3 km.&lt;/p&gt;&lt;p&gt;The research was carried out with the support of RFBR (grants 20-35-90066, 18-35-20058, 18-05-00590 and 18-05-70094) and the Program of development of Lomonosov Moscow State University.&lt;/p&gt;


2004 ◽  
Vol 44 (1) ◽  
pp. 397 ◽  
Author(s):  
U.D. Weber ◽  
K.C. Hill ◽  
R.W. Brown ◽  
K. Gallagher ◽  
B.P. Kohn ◽  
...  

The Emperor and Golden Beach Subgroups are becoming the focus of Gippsland Basin exploration, yet little is known about their composition and distribution. Regional modelling of over 400 apatite fission track analyses in the hinterland constrains the timing, magnitude and distribution of uplift and denudation and hence sediment supply to the basin. The study yielded regional maps through time of palaeotemperature, overburden, denudation rate and palaeotopography, with increasing assumptions and hence uncertainty.Regionally the >60,000 km3 of Strzelecki Group comprises ~90% volcanoclastic detritus and coal with only ~10% basement-derived sediment, but the northern margin of the basin, near Lakes Entrance, is likely to have a higher basement-derived portion resulting in better reservoirs. The basement-derived sediments are probably largely granitic as the Devonian granites were exposed during the Permo-Triassic Hunter-Bowen Orogeny. Regional mid-Cretaceous uplift resulted in increased denudation of basement, but inversion of the basin margins resulted in denudation of the onshore Strzelecki Group sediments. Emperor and Golden Beach Subgroup sediments deposited in the subsiding Central Graben were at least 50% basement-derived, again with higher quality reservoirs predicted near the Lakes Entrance area and poorer reservoirs near to Wilson’s Promontory. The Latrobe Group siliciclastics were at least 80% derived from basement with a substantial portion from northern Tasmania and the Furneaux Islands around 60-50 Ma.


1991 ◽  
Vol 31 (1) ◽  
pp. 131 ◽  
Author(s):  
T. A. Dumitru ◽  
K. C. Hill ◽  
D. A. Coyle ◽  
I. R. Duddy ◽  
D. A. Foster ◽  
...  

Over the last five to ten years, apatite fission track analysis has developed into a sophisticated technique for studying the low-temperature thermal history of rocks. It has particular utility in oil exploration because its temperature range of sensitivity, about 20° to 125°C, overlaps the oil generation window. Whereas older fission track thermal history approaches relied solely on the sample fission track age, the new interpretive approaches use sample age, single grain age and track length data. They also emphasise the analysis of systematic variations in data patterns in sequences of samples, such as samples from various depths in a well. Laboratory study of the thermal annealing of fission tracks and compilation of fission track data from geological case studies has greatly improved our understanding of apatite fission track systematics, allowing considerably more detailed interpretations of thermal histories.Application of apatite fission track analysis to the rifted continental margins of south-eastern Australia shows that rifting and separation of Australia from Antarctica and the Lord Howe Rise were accompanied by at least 1.5-3 km of uplift and erosion along the Tasman Sea and Bass Strait coasts. Uplift and erosion were much less 100 km or so inland. This shows that the uplift of the south-eastern Australian margins was caused by the continental rifting process, the same process that initiated major subsidence in the sedimentary basins in Bass Strait. The consistent fission track data patterns around south-eastern Australia suggest a generally similar tectonic setting for the Tasman Sea and Bass Strait parts of the margin. Lister et al. (in press) propose that the Tasman part of the margin is an upper plate type of margin that formed above a west-dipping detachment zone. The fission track data suggest that the Bass Strait part of the margin may also be of upper plate type.


1993 ◽  
Vol 103 (1-4) ◽  
pp. 157-169
Author(s):  
M. Grivet ◽  
M. Rebetez ◽  
N. Ben Ghouma ◽  
A. Chambaudet ◽  
R. Jonckheere ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document