scholarly journals Late Cenozoic structure and tectonics of the southern Sierra Nevada–San Joaquin Basin transition, California

Geosphere ◽  
2019 ◽  
Vol 15 (4) ◽  
pp. 1164-1205
Author(s):  
Jason Saleeby ◽  
Zorka Saleeby

AbstractThis paper presents a new synthesis for the late Cenozoic tectonic, paleogeographic, and geomorphologic evolution of the southern Sierra Nevada and adjacent eastern San Joaquin Basin. The southern Sierra Nevada and San Joaquin Basin contrast sharply, with the former constituting high-relief basement exposures and the latter constituting a Neogene marine basin with superposed low-relief uplifts actively forming along its margins. Nevertheless, we show that Neogene basinal conditions extended continuously eastward across much of the southern Sierra Nevada, and that during late Neogene–Quaternary time, the intra-Sierran basinal deposits were uplifted and fluvially reworked into the San Joaquin Basin. Early Neogene normal-sense growth faulting was widespread and instrumental in forming sediment accommodation spaces across the entire basinal system. Upon erosion of the intra-Sierran basinal deposits, structural relief that formed on the basement surface by the growth faults emerged as topographic relief. Such “weathered out” fossil fault scarps control much of the modern southern Sierra landscape. This Neogene high-angle fault system followed major Late Cretaceous basement structures that penetrated the crust and that formed in conjunction with partial loss of the region’s underlying mantle lithosphere. This left the region highly prone to surface faulting, volcanism, and surface uplift and/or subsidence transients during subsequent tectonic regimes. The effects of the early Neogene passage of the Mendocino Triple Junction were amplified as a result of the disrupted state of the region’s basement. This entailed widespread high-angle normal faulting, convecting mantle-sourced volcanism, and epeirogenic transients that were instrumental in sediment dispersal, deposition, and reworking patterns. Subsequent phases of epeirogenic deformation forced additional sediment reworking episodes across the southern Sierra Nevada–eastern San Joaquin Basin region during the late Miocene break-off and west tilt of the Sierra Nevada microplate and the Pliocene–Quaternary loss of the region’s residual mantle lithosphere that was left intact from the Late Cretaceous tectonic regime. These late Cenozoic events have left the high local-relief southern Sierra basement denuded of its Neogene basinal cover and emergent immediately adjacent to the eastern San Joaquin Basin and its eastern marginal uplift zone.

2021 ◽  
Author(s):  
R.W. Graymer ◽  
V.E. Langenheim

ABSTRACT The basic stratigraphic and structural framework of Mount Diablo is described using a revised geologic map, gravity data, and aeromagnetic data. The mountain is made up of two distinct stratigraphic assemblages representing different depocenters that were juxtaposed by ~20 km of late Pliocene and Quaternary right-lateral offset on the Greenville-Diablo-Concord fault. Both assemblages are composed of Cretaceous and Cenozoic strata overlying a compound basement made up of the Franciscan and Great Valley complexes. The rocks are folded and faulted by late Neogene and Quaternary compressional structures related to both regional plate-boundary–normal compression and a restraining step in the strike-slip fault system. The core of the mountain is made up of uplifted basement rocks. Late Neogene and Quaternary deformation is overprinted on Paleogene extensional deformation that is evidenced at Mount Diablo by significant attenuation in the basement rocks and by an uptilted stepped graben structure on the northeast flank. Retrodeformation of the northeast flank suggests that late Early to early Late Cretaceous strata may have been deposited against and across a steeply west-dipping basement escarpment. The location of the mountain today was a depocenter through the Late Cretaceous and Paleogene and received shallow-marine deposits periodically into the late Miocene. Uplift of the mountain itself happened mostly in the Quaternary.


2021 ◽  
Author(s):  
Peng Zhang ◽  
Lianfu Mei ◽  
Shao-Yong Jiang ◽  
Sihuang Xu ◽  
Raymond A. Donelick ◽  
...  

2020 ◽  
Author(s):  
Jef Deckers ◽  
Bernd Rombaut ◽  
Koen Van Noten ◽  
Kris Vanneste

Abstract. After their first development in the middle Mesozoic, the overall NW-SE striking border fault systems of the Roer Valley Graben were reactivated as reverse faults under Late Cretaceous compression (inversion) and reactivated again as normal faults under Cenozoic extension. In Flanders (northern Belgium), a new geological model was created for the western border fault system of the Roer Valley Graben. After carefully evaluating the new geological model, this study shows the presence of two structural domains in this fault system with distinctly different strain distributions during both Late Cretaceous compression and Cenozoic extension. A southern domain is characterized by narrow ( 10 km) distributed faulting. The total normal and reverse throw in the two domains was estimated to be similar during both tectonic phases. The repeated similarities in strain distribution during both compression and extension stresses the importance of inherited structural domains on the inversion/rifting kinematics besides more obvious factors such as stress directions. The faults in both domains strike NW-SE, but the change in geometry between them takes place across the oblique WNW-ESE striking Grote Brogel fault. Also in other parts of the Roer Valley Graben, WNW-ESE striking faults are associated with major geometrical changes (left-stepping patterns) in its border fault system. This study thereby demonstrates the presence of different long-lived structural domains in the Roer Valley Graben, each having their particular strain distributions that are related to the presence of non-colinear faults.


Sign in / Sign up

Export Citation Format

Share Document