border fault
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 9)

H-INDEX

12
(FIVE YEARS 0)

2021 ◽  
Vol 9 ◽  
Author(s):  
Folarin Kolawole ◽  
Thomas B. Phillips ◽  
Estella A. Atekwana ◽  
Christopher A.-L. Jackson

Little is known about rift kinematics and strain distribution during the earliest phase of extension due to the deep burial of the pre-rift and earliest rift structures beneath younger, rift-related deposits. Yet, this exact phase of basin development ultimately sets the stage for the location of continental plate divergence and breakup. Here, we investigate the structure and strain distribution in the multiphase Late Paleozoic-Cenozoic magma-poor Rukwa Rift, East Africa during the earliest phase of extension. We utilize aeromagnetic data that image the Precambrian Chisi Shear Zone (CSZ) and bounding terranes, and interpretations of 2-D seismic reflection data to show that, during the earliest rift phase (Permo-Triassic ‘Karoo’): 1) the rift was defined by the Lupa border fault, which exploited colinear basement terrane boundaries, and a prominent intra-basinal fault cluster (329° ± 9.6) that trends parallel to and whose location was controlled by the CSZ (326°); 2) extensional strain in the NW section of the rift was accommodated by both the intra-basinal fault cluster and the border fault, where the intra-basinal faulting account for up to 64% of extension; in the SE where the CSZ is absent, strain is primarily focused on the Lupa Fault. Here, the early-rift strain is thus, not accommodated only by border the fault as suggested by existing magma-poor early-rift models; instead, strain focuses relatively quickly on a large border fault and intra-basinal fault clusters that follow pre-existing intra-basement structures; 3) two styles of early-rift strain localization are evident, in which strain is localized onto a narrow discrete zone of basement weakness in the form of a large rift fault (Style-1 localization), and onto a broader discrete zone of basement weakness in the form of a fault cluster (Style-2 localization). We argue that the CSZ and adjacent terrane boundaries represent zones of mechanical weakness that controlled the first-order strain distribution and rift development during the earliest phase of extension. The established early-rift structure, modulated by structural inheritance, then persisted through the subsequent rift phases. The results of our study, in a juvenile and relatively well-exposed and data-rich rift, are applicable to understanding the structural evolution of deeper, buried ancient rifts.


Solid Earth ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 345-361
Author(s):  
Jef Deckers ◽  
Bernd Rombaut ◽  
Koen Van Noten ◽  
Kris Vanneste

Abstract. The influence of strain distribution inheritance within fault systems on repeated fault reactivation is far less understood than the process of repeated fault reactivation itself. By evaluating cross sections through a new 3D geological model, we demonstrate contrasts in strain distribution between different fault segments of the same fault system during its reverse reactivation and subsequent normal reactivation. The study object is the Roer Valley graben (RVG), a middle Mesozoic rift basin in western Europe that is bounded by large border fault systems. These border fault systems were reversely reactivated under Late Cretaceous compression (inversion) and reactivated as normal faults under Cenozoic extension. A careful evaluation of the new geological model of the western RVG border fault system – the Feldbiss fault system (FFS) – reveals the presence of two structural domains in the FFS with distinctly different strain distributions during both Late Cretaceous compression and Cenozoic extension. A southern domain is characterized by narrow (<3 km) localized faulting, while the northern is characterized by wide (>10 km) distributed faulting. The total normal and reverse throws in the two domains of the FFS were estimated to be similar during both tectonic phases. This shows that each domain accommodated a similar amount of compressional and extensional deformation but persistently distributed it differently. The faults in both structural domains of the FFS strike NW–SE, but the change in geometry between them takes place across the oblique WNW–ESE striking Grote Brogel fault. Also in other parts of the Roer Valley graben, WNW–ESE-striking faults are associated with major geometrical changes (left-stepping patterns) in its border fault system. At the contact between both structural domains, a major NNE–SSW-striking latest Carboniferous strike-slip fault is present, referred to as the Gruitrode Lineament. Across another latest Carboniferous strike-slip fault zone (Donderslag Lineament) nearby, changes in the geometry of Mesozoic fault populations were also noted. These observations demonstrate that Late Cretaceous and Cenozoic inherited changes in fault geometries as well as strain distributions were likely caused by the presence of pre-existing lineaments in the basement.


2020 ◽  
Vol 139 ◽  
pp. 104097
Author(s):  
Luke N.J. Wedmore ◽  
Jack N. Williams ◽  
Juliet Biggs ◽  
Åke Fagereng ◽  
Felix Mphepo ◽  
...  

Geosphere ◽  
2020 ◽  
Vol 16 (5) ◽  
pp. 1293-1311
Author(s):  
Christopher A. Scholz ◽  
Donna J. Shillington ◽  
Lachlan J.M. Wright ◽  
Natalie Accardo ◽  
James B. Gaherty ◽  
...  

Abstract The Lake Malawi (Nyasa) Rift, in the East African Rift System (EARS), is an ideal modern analogue for the study of extensional tectonic systems in low strain rate settings. The seismically active rift contains the 700-m-deep Lake Malawi, one of the world’s oldest and largest freshwater lakes with one of the most diverse endemic faunal assemblages on Earth. Modern and reprocessed legacy multichannel seismic-reflection data are constrained by velocity information from a wide-angle seismic experiment to evaluate variability in extension, segmentation, and timing of fault development along the 550-km-long rift zone. Fault geometries and patterns of synrift sediment fills show that the Lake Malawi Rift is composed of three asymmetric rift segments, with intervening accommodation zone morphologies controlled by the degree of overlap between segment border faults. Most extension occurs on the basin border faults, and broadly distributed extension is only observed at one accommodation zone, where no border fault overlap is observed. Structural restorations indicate a weakly extended rift system (∼7 km), with diminishing values of extension and thinner rift fill from north to south, suggesting a progressively younger rift to the south. There is no evidence of diking, sill injection, or extrusives within the synrift fill of the Lake Malawi Rift, although the volcanic load of the Rungwe magmatic system north of the lake and related subsidence may explain the presence of anomalously thick synrift fill in the northernmost part of the lake. The thickest synrift depocenters (∼5.5 km) are confined to narrow 10- to 20-km-wide zones adjacent to each rift segment border fault, indicating concentration of strain on border faults rather than intrarift faults. Intrarift structures control axial sediment delivery in the North and Central rift segments, focusing sediment into confined areas resulting in localized overpressure and shale diapirs. The asymmetric, basement-controlled relief was established early in rift development. When overprinted with frequent high-amplitude hydroclimate fluctuations, which are well documented for this basin, the resulting highly variable landscape and lake morphometry through time likely impacted the diverse endemic faunas that evolved within the basin. New seismic-reflection data, augmented by wide-angle seismic data and age constraints from drill core, offer the most highly resolved 3D view to date of latest Cenozoic extensional deformation in East Africa and provide a foundation for hazards analysis, resource assessments, and constraining deformation in a low strain rate, magma-poor active rift.


2020 ◽  
Author(s):  
Jef Deckers ◽  
Bernd Rombaut ◽  
Koen Van Noten ◽  
Kris Vanneste

Abstract. After their first development in the middle Mesozoic, the overall NW-SE striking border fault systems of the Roer Valley Graben were reactivated as reverse faults under Late Cretaceous compression (inversion) and reactivated again as normal faults under Cenozoic extension. In Flanders (northern Belgium), a new geological model was created for the western border fault system of the Roer Valley Graben. After carefully evaluating the new geological model, this study shows the presence of two structural domains in this fault system with distinctly different strain distributions during both Late Cretaceous compression and Cenozoic extension. A southern domain is characterized by narrow ( 10 km) distributed faulting. The total normal and reverse throw in the two domains was estimated to be similar during both tectonic phases. The repeated similarities in strain distribution during both compression and extension stresses the importance of inherited structural domains on the inversion/rifting kinematics besides more obvious factors such as stress directions. The faults in both domains strike NW-SE, but the change in geometry between them takes place across the oblique WNW-ESE striking Grote Brogel fault. Also in other parts of the Roer Valley Graben, WNW-ESE striking faults are associated with major geometrical changes (left-stepping patterns) in its border fault system. This study thereby demonstrates the presence of different long-lived structural domains in the Roer Valley Graben, each having their particular strain distributions that are related to the presence of non-colinear faults.


2020 ◽  
Author(s):  
Luke Wedmore ◽  
Jack Williams ◽  
Juliet Biggs ◽  
Ake Fagereng ◽  
Felix Mphepo ◽  
...  

2020 ◽  
Vol 71 (1) ◽  
Author(s):  
David Kušnirák ◽  
Hermann Zeyen ◽  
Miroslav Bielik ◽  
René Putiška ◽  
Andrej Mojzeš ◽  
...  

Author(s):  
J. Robert Jones ◽  
D. Sarah Stamps ◽  
Christelle Wauthier ◽  
Elifuraha Saria ◽  
Juliet Biggs

2018 ◽  
Vol 123 (11) ◽  
pp. 10,003-10,025 ◽  
Author(s):  
N. J. Accardo ◽  
D. J. Shillington ◽  
J. B. Gaherty ◽  
C. A. Scholz ◽  
A. A. Nyblade ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document