A correction to “Seismicity of the Foothills Fault System of the Sierra Nevada between Folsom and Oroville, California” by Cramer, Toppozada, and Parke

1980 ◽  
Vol 70 (1) ◽  
pp. 393-393
Author(s):  
C. H. Cramer ◽  
T. R. Toppozada
Keyword(s):  
1978 ◽  
Vol 68 (1) ◽  
pp. 245-249
Author(s):  
Chris H. Cramer ◽  
Tousson R. Toppozada ◽  
David L. Parke
Keyword(s):  

Geology ◽  
2003 ◽  
Vol 31 (4) ◽  
pp. 327 ◽  
Author(s):  
Jeffrey Unruh ◽  
James Humphrey ◽  
Andrew Barron
Keyword(s):  

2020 ◽  
Vol 132 (7-8) ◽  
pp. 1681-1703
Author(s):  
Steven N. Bacon ◽  
Thomas F. Bullard ◽  
Amanda K. Keen-Zebert ◽  
Angela S. Jayko ◽  
David L. Decker

Abstract High-resolution elevation surveys of deformed late Pleistocene shorelines and new luminescence dating provide improved constraints on spatiotemporal patterns of distributed slip between normal and strike-slip faulting in southern Owens Valley, eastern California. A complex array of five subparallel faults, including the normal Sierra Nevada frontal fault and the oblique-normal Owens Valley fault, collectively form an active pull-apart basin that has developed within a dextral transtensional shear zone. Spatiotemporal patterns of slip are constrained by post–IR-IRSL (post-infrared–infrared stimulated luminescence) dating of a 40.0 ± 5.8 ka highstand beach ridge that is vertically faulted and tilted up to 9.8 ± 1.8 m and an undeformed suite of 11–16 ka beach ridges. The tectono-geomorphic record of deformed beach ridges and alluvial fans indicates that both normal and dextral faulting occurred between the period of ca. 16 and 40 ka, whereas dextral faulting has been the predominant style of slip since ca. 16 ka. A total extension rate of 0.7 ± 0.2 mm/yr resolved in the N72°E direction across all faults in Owens Lake basin is within error of geodetic estimates, suggesting extension has been constant during intervals of 101–104 yr. A new vertical slip rate of 0.13 ± 0.04 m/k.y. on the southern Owens Valley fault from deformed 160 ± 32 ka shoreline features also suggests constant slip for intervals up to 105 yr when compared to paleoseismic vertical slip rates from the same fault segment. This record supports a deformation mechanism characterized by steady slip and long interseismic periods of 8–10 k.y. where the south-central Owens Valley fault and Sierra Nevada frontal fault form a parallel fault system.


Geosphere ◽  
2019 ◽  
Vol 15 (4) ◽  
pp. 1164-1205
Author(s):  
Jason Saleeby ◽  
Zorka Saleeby

AbstractThis paper presents a new synthesis for the late Cenozoic tectonic, paleogeographic, and geomorphologic evolution of the southern Sierra Nevada and adjacent eastern San Joaquin Basin. The southern Sierra Nevada and San Joaquin Basin contrast sharply, with the former constituting high-relief basement exposures and the latter constituting a Neogene marine basin with superposed low-relief uplifts actively forming along its margins. Nevertheless, we show that Neogene basinal conditions extended continuously eastward across much of the southern Sierra Nevada, and that during late Neogene–Quaternary time, the intra-Sierran basinal deposits were uplifted and fluvially reworked into the San Joaquin Basin. Early Neogene normal-sense growth faulting was widespread and instrumental in forming sediment accommodation spaces across the entire basinal system. Upon erosion of the intra-Sierran basinal deposits, structural relief that formed on the basement surface by the growth faults emerged as topographic relief. Such “weathered out” fossil fault scarps control much of the modern southern Sierra landscape. This Neogene high-angle fault system followed major Late Cretaceous basement structures that penetrated the crust and that formed in conjunction with partial loss of the region’s underlying mantle lithosphere. This left the region highly prone to surface faulting, volcanism, and surface uplift and/or subsidence transients during subsequent tectonic regimes. The effects of the early Neogene passage of the Mendocino Triple Junction were amplified as a result of the disrupted state of the region’s basement. This entailed widespread high-angle normal faulting, convecting mantle-sourced volcanism, and epeirogenic transients that were instrumental in sediment dispersal, deposition, and reworking patterns. Subsequent phases of epeirogenic deformation forced additional sediment reworking episodes across the southern Sierra Nevada–eastern San Joaquin Basin region during the late Miocene break-off and west tilt of the Sierra Nevada microplate and the Pliocene–Quaternary loss of the region’s residual mantle lithosphere that was left intact from the Late Cretaceous tectonic regime. These late Cenozoic events have left the high local-relief southern Sierra basement denuded of its Neogene basinal cover and emergent immediately adjacent to the eastern San Joaquin Basin and its eastern marginal uplift zone.


Sign in / Sign up

Export Citation Format

Share Document