scholarly journals Influence of inherited structural domains and their particular strain distributions on the Roer Valley Graben evolution from inversion to extension

2020 ◽  
Author(s):  
Jef Deckers ◽  
Bernd Rombaut ◽  
Koen Van Noten ◽  
Kris Vanneste

Abstract. After their first development in the middle Mesozoic, the overall NW-SE striking border fault systems of the Roer Valley Graben were reactivated as reverse faults under Late Cretaceous compression (inversion) and reactivated again as normal faults under Cenozoic extension. In Flanders (northern Belgium), a new geological model was created for the western border fault system of the Roer Valley Graben. After carefully evaluating the new geological model, this study shows the presence of two structural domains in this fault system with distinctly different strain distributions during both Late Cretaceous compression and Cenozoic extension. A southern domain is characterized by narrow ( 10 km) distributed faulting. The total normal and reverse throw in the two domains was estimated to be similar during both tectonic phases. The repeated similarities in strain distribution during both compression and extension stresses the importance of inherited structural domains on the inversion/rifting kinematics besides more obvious factors such as stress directions. The faults in both domains strike NW-SE, but the change in geometry between them takes place across the oblique WNW-ESE striking Grote Brogel fault. Also in other parts of the Roer Valley Graben, WNW-ESE striking faults are associated with major geometrical changes (left-stepping patterns) in its border fault system. This study thereby demonstrates the presence of different long-lived structural domains in the Roer Valley Graben, each having their particular strain distributions that are related to the presence of non-colinear faults.

Solid Earth ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 345-361
Author(s):  
Jef Deckers ◽  
Bernd Rombaut ◽  
Koen Van Noten ◽  
Kris Vanneste

Abstract. The influence of strain distribution inheritance within fault systems on repeated fault reactivation is far less understood than the process of repeated fault reactivation itself. By evaluating cross sections through a new 3D geological model, we demonstrate contrasts in strain distribution between different fault segments of the same fault system during its reverse reactivation and subsequent normal reactivation. The study object is the Roer Valley graben (RVG), a middle Mesozoic rift basin in western Europe that is bounded by large border fault systems. These border fault systems were reversely reactivated under Late Cretaceous compression (inversion) and reactivated as normal faults under Cenozoic extension. A careful evaluation of the new geological model of the western RVG border fault system – the Feldbiss fault system (FFS) – reveals the presence of two structural domains in the FFS with distinctly different strain distributions during both Late Cretaceous compression and Cenozoic extension. A southern domain is characterized by narrow (<3 km) localized faulting, while the northern is characterized by wide (>10 km) distributed faulting. The total normal and reverse throws in the two domains of the FFS were estimated to be similar during both tectonic phases. This shows that each domain accommodated a similar amount of compressional and extensional deformation but persistently distributed it differently. The faults in both structural domains of the FFS strike NW–SE, but the change in geometry between them takes place across the oblique WNW–ESE striking Grote Brogel fault. Also in other parts of the Roer Valley graben, WNW–ESE-striking faults are associated with major geometrical changes (left-stepping patterns) in its border fault system. At the contact between both structural domains, a major NNE–SSW-striking latest Carboniferous strike-slip fault is present, referred to as the Gruitrode Lineament. Across another latest Carboniferous strike-slip fault zone (Donderslag Lineament) nearby, changes in the geometry of Mesozoic fault populations were also noted. These observations demonstrate that Late Cretaceous and Cenozoic inherited changes in fault geometries as well as strain distributions were likely caused by the presence of pre-existing lineaments in the basement.


2001 ◽  
Vol 80 (3-4) ◽  
pp. 69-78 ◽  
Author(s):  
M. Sintubin ◽  
O. Sels ◽  
P. Buffel

AbstractThe Bree Uplift is a particular structure in the direct footwall of the southwestern graben boundary fault system of the Roer Valley Graben, which has been firstly recognized at the base of the Cretaceous. To date fault activity around the Bree Uplift has been confined to the Subhercynian (late Cretaceous) inversion event or considered fading out during Tertiary times.The revision of the existing geological data reveals that the Bree Uplift can still be recognized on the top-Tertiary map. This infers at least a late Tertiary activity, suggesting continuous fault activity in the graben boundary fault system not only on the major boundary faults but also on different splay faults, bounding individual fault blocks.


2020 ◽  
Vol 12 (1) ◽  
pp. 851-865
Author(s):  
Sukonmeth Jitmahantakul ◽  
Piyaphong Chenrai ◽  
Pitsanupong Kanjanapayont ◽  
Waruntorn Kanitpanyacharoen

AbstractA well-developed multi-tier polygonal fault system is located in the Great South Basin offshore New Zealand’s South Island. The system has been characterised using a high-quality three-dimensional seismic survey tied to available exploration boreholes using regional two-dimensional seismic data. In this study area, two polygonal fault intervals are identified and analysed, Tier 1 and Tier 2. Tier 1 coincides with the Tucker Cove Formation (Late Eocene) with small polygonal faults. Tier 2 is restricted to the Paleocene-to-Late Eocene interval with a great number of large faults. In map view, polygonal fault cells are outlined by a series of conjugate pairs of normal faults. The polygonal faults are demonstrated to be controlled by depositional facies, specifically offshore bathyal deposits characterised by fine-grained clays, marls and muds. Fault throw analysis is used to understand the propagation history of the polygonal faults in this area. Tier 1 and Tier 2 initiate at about Late Eocene and Early Eocene, respectively, based on their maximum fault throws. A set of three-dimensional fault throw images within Tier 2 shows that maximum fault throws of the inner polygonal fault cell occurs at the same age, while the outer polygonal fault cell exhibits maximum fault throws at shallower levels of different ages. The polygonal fault systems are believed to be related to the dewatering of sedimentary formation during the diagenesis process. Interpretation of the polygonal fault in this area is useful in assessing the migration pathway and seal ability of the Eocene mudstone sequence in the Great South Basin.


Solid Earth ◽  
2015 ◽  
Vol 6 (1) ◽  
pp. 285-302 ◽  
Author(s):  
F. L. Schenker ◽  
M. G. Fellin ◽  
J.-P. Burg

Abstract. The Pelagonian zone, situated between the External Hellenides/Cyclades to the west and the Axios/Vardar/Almopias zone (AVAZ) and the Rhodope to the east, was involved in late Early Cretaceous and in Late Cretaceous–Eocene orogenic events whose duration and extent are still controversial. This paper constrains their late thermal imprints. New and previously published zircon (ZFT) and apatite (AFT) fission-track ages show cooling below 240 °C of the metamorphic western AVAZ imbricates between 102 and 93–90 Ma, of northern Pelagonia between 86 and 68 Ma, of the eastern AVAZ at 80 Ma and of the western Rhodope at 72 Ma. At the regional scale, this heterogeneous cooling is coeval with subsidence of Late Cretaceous marine basin(s) that unconformably covered the Early Cretaceous (130–110 Ma) thrust system from 100 Ma. Thrusting resumed at 70 Ma in the AVAZ and migrated across Pelagonia to reach the External Hellenides at 40–38 Ma. Renewed thrusting in Pelagonia is attested at 68 Ma by abrupt and rapid cooling below 240 °C and erosion of the gneissic rocks. ZFT and AFT in western and eastern Pelagonia, respectively, testify at ~40 Ma to the latest thermal imprint related to thrusting. Central-eastern Pelagonia cooled rapidly and uniformly from 240 to 80 °C between 24 and 16 Ma in the footwall of a major extensional fault. Extension started even earlier, at ~33 Ma in the western AVAZ. Post-7 Ma rapid cooling is inferred from inverse modeling of AFT lengths. It occurred while E–W normal faults were cutting Pliocene-to-recent sediment.


2004 ◽  
Vol 141 (5) ◽  
pp. 565-572 ◽  
Author(s):  
YUVAL BARTOV ◽  
AMIR SAGY

A newly discovered active small-scale pull-apart (Mor structure), located in the western part of the Dead Sea Basin, shows recent basin-parallel extension and strike-slip faulting, and offers a rare view of pull-apart internal structure. The Mor structure is bounded by N–S-trending strike-slip faults, and cross-cut by low-angle, E–W-trending normal faults. The geometry of this pull-apart suggests that displacement between the two stepped N–S strike-slip faults of the Mor structure is transferred by the extension associated with the normal faults. The continuing deformation in this structure is evident by the observation of at least three deformation episodes between 50 ka and present. The calculated sinistral slip-rate is 3.5 mm/yr over the last 30 000 years. This slip rate indicates that the Mor structure overlies the currently most active strike-slip fault within the western border of the Dead Sea pull-apart. The Mor structure is an example of a small pull-apart basin developed within a larger pull-apart. This type of hierarchy in pull-apart structures is an indication for their ongoing evolution.


GeoArabia ◽  
2003 ◽  
Vol 8 (1) ◽  
pp. 91-124 ◽  
Author(s):  
Adel R Moustafa ◽  
Ati Saoudi ◽  
Alaa Moubasher ◽  
Ibrahim M Ibrahim ◽  
Hesham Molokhia ◽  
...  

ABSTRACT An integrated surface mapping and subsurface study of the Bahariya Depression aided the regional subsurface interpretation. It indicated that four major ENE-oriented structural belts overlie deep-seated faults in this part of the ‘tectonically stable’ area of Egypt. The rocks of the Bahariya area were deformed in the Late Cretaceous, post-Middle Eocene, and Middle Miocene-and subsurface data indicated an early Mesozoic phase of normal faulting. The Late Cretaceous and post-Middle Eocene deformations reactivated the early normal faults by oblique slip and formed a large swell in the Bahariya region. The crest was continuously eroded whereas its peripheries were onlapped by Maastrichtian and Tertiary sediments. The tectonic evolution of the Bahariya region shows great similarity to the deformation of the ‘tectonically unstable’ area of the northern Western Desert where several hydrocarbon fields have been discovered. This similarity may indicate that the same phases of deformation could extend to other basins lying in the ‘tectonically stable’ area, such as the Asyut, Dakhla, Nuqura, and El Misaha basins.


1994 ◽  
Vol 34 ◽  
pp. 1-23
Author(s):  
Ole Valdemar Vejbæk ◽  
Svend Stouge ◽  
Kurt Damtoft Poulsen

The present distribution of Palaeozoic sediments in the Bornholm area is a consequence of several different tectonic regimes during the Phanerozoic eon. This development may be divided into three main evolutionary phases: A Caledonian to Variscian phase encompassing the Lower Palaeozoic sediments. The sediments are assumed originally to have showed a gradual thickness increase towards the Caledonian Deformation Front located to the south. This pre-rift development may be further subdivided into three sub-phases: A period of slow sedimentation on a relatively stable platform as recorded by the uniformly low thicknesses of the Cambrian to Lower Silurian sediments. A period of foreland-type rapid sedimentation commencing in the Llandoverian to Wenlockian, continuing in the Ludlovian and possibly into the Devonian. The period is characterized by /olding and uplift of the Caledonides to the south causing tectonic loading of the foreland and resultant rapid sedimentation in the foreland basin. A period of gravitational collapse causing minor erosion during the Devonian. The transition to the second major phase in the Phanerozaic structural development, during which the Sorgenfrei-Tornquist zone came into existence, is recorded by regional deposition of Carboniferous sediments. These sediments are, however, mostly removed by tater erosion. A syn-rift phase characterized by sedimentation in graben areas and expanding basins commencing in the Rotliegendes and continuing through the Triassic, Jurassic and Lower Cretaceous. This phase was probably initiated by a Late Carboniferous- Early Permian tensional dominated right-lateral wrench fault system within the Sorgenfrei-Tornquist zone. A Post-rift development phase dominated by Late Cretaceous carbonate sedimentation. During Late Cretaceous and Early Tertiary times the Bornholm area was strongly affected by inversion tectonism caused by compressional strike-slip movements. This resulted in reverse faulting and uplift and erosion of former basinal areas. Understanding the two latter phases is important for understanding the present distribution of the Palaeozoic. A key to understanding the hydrocarbon potential of the area is the maturation of the organic matter in the main potential source, the Ordovician Upper Alum Shale. Maturity was mainly achieved during the Silurian to Late Palaeozoic time, and little further maturation took place later. The Upper Alum Shale is accordingly expected to be overmature in the main part of the study area and mature in the Hano Bay Basin. This reflects the assumed primary uniform thickness of the Lower Palaeozoic, with a general thinning towards the northeast. A Caledonian to Variscian phase encompassing the Lower Palaeozoic sediments. The sediments are assumed originally to have showed a gradual thickness increase towards the Caledonian Deformation Front located to the south. This pre-rift development may be further subdivided into three sub-phases: A period of slow sedimentation on a relatively stable platform as recorded by the uniformly low thicknesses of the Cambrian to Lower Silurian sediments. A period of foreland-type rapid sedimentation commencing in the Llandoverian to Wenlockian, continuing in the Ludlovian and possibly into the Devonian. The period is characterized by /olding and uplift of the Caledonides to the south causing tectonic loading of the foreland and resultant rapid sedimentation in the foreland basin. A period of gravitational collapse causing minor erosion during the Devonian. The transition to the second major phase in the Phanerozaic structural development, during which the Sorgenfrei - Tornquist zane came into existence, is recorded by regional deposition of Carboniferous sediments. These sediments are, however, mostly removed by tater erosion. A syn-rift phase characterized by sedimentation in graben areas and expanding basins commencing in the Rotliegendes and continuing through the Triassic, Jurassic and Lower Cretaceous. This phase was probably initiated by a Late Carboniferous- Early Permian tensional dominated right-lateral wrench fault system within the Sorgenfrei-Tornquist zone. A Post-rift development phase dominated by Late Cretaceous carbonate sedimentation. During Late Cretaceous and Early Tertiary times the Bornholm area was strongly affected by inversion tectonism caused by compressional strike-slip movements. This resulted in reverse faulting and uplift and erosion of former basinal areas. Understanding the two latter phases is important for understanding the present distribution of the Palaeozoic. A key to understanding the hydrocarbon potential of thearea is the maturation of the organic matter in the main potential source, the Ordovician Upper Alum Shale. Maturity was mainly achieved during the Silurian to Late Palaeozoic time, and little further maturation took place later. The Upper Alum Shale is accordingly expected to be overmature in the main part of the study area and mature in the Hano Bay Basin. This reflects the assumed primary uniform thickness of the Lower Palaeozoic, with a general thinning towards the northeast.


2001 ◽  
Vol 34 (1) ◽  
pp. 235 ◽  
Author(s):  
N. FLOTTÉ ◽  
D. SOREL

Structural mapping in northern Peloponnesus reveals the emergence of an E-W striking, more than 70km long, low angle detachment fault dipping to the north beneath the Gulf of Corinth. This paper describes four north-south structural cross-sections in northern Peloponnesus. Structural and sedimentological field observations show that in the studied area the normal faults of northern Peloponnesus branch at depth on this major low angle north-dipping brittle detachment. The southern part of the detachment and the related normal faults are now inactive. To the north, the active Helike and Aigion normal faults are connected at depth with the seismically active northern part of the detachment beneath the Gulf of Corinth.


2021 ◽  
Author(s):  
Léo Marconato ◽  
Philippe-Hervé Leloup ◽  
Cécile Lasserre ◽  
Séverine Caritg ◽  
Romain Jolivet ◽  
...  

&lt;div&gt; &lt;div&gt; &lt;div&gt; &lt;p&gt;The 2019, M&lt;sub&gt;w&lt;/sub&gt;4.9 Le Teil earthquake occurred in southeastern France, causing important damage in a slow deforming region.&amp;#160;Field based, remote sensing and seismological studies following the event revealed its very shallow depth, a rupture length of ~5 km with surface rupture evidences and a thrusting mechanism. We further investigate this earthquake by combining geological field mapping and 3D geology, InSAR time series analysis and coseismic slip inversion.&lt;/p&gt; &lt;p&gt;From structural, stratigraphic and geological data collected around the epicenter, we first produce a 3D geological model over a 70 km&lt;sup&gt;2&lt;/sup&gt; and 3 km deep zone surrounding the 2019 rupture, using the GeoModeller software. This model includes the geometry of the main faults and geological layers, and especially a geometry for La Rouvi&amp;#232;re Fault, an Oligocene normal fault likely reactivated during the earthquake.&lt;/p&gt; &lt;p&gt;We also generate a time series of the surface displacement by InSAR, based on Sentinel-1 data ranging from early January 2019 to late January 2020, using the NSBAS processing chain. The spatio-temporal patterns of the surface displacement for this limited time span show neither clear pre-seismic signal nor significant postseismic slip. We extract from the InSAR time series the coseismic displacement pattern, and in particular the along-strike slip distribution that shows spatial variations. The maximum relative displacement along the Line-Of-Sight is up to ~16 cm and is located in the southwestern part of the rupture.&lt;/p&gt; &lt;p&gt;We then invert for the slip distribution on the fault from the InSAR coseismic surface displacement field. We use a non-negative least square approach based on the CSI software and the fault surface trace defined in the 3D geological model, exploring the range of plausible fault dip values. Best-fitting dips range between 55&amp;#176; and 60&amp;#176;. Such values are slightly lower than those measured on La Rouvi&amp;#232;re Fault planes in the field. Our model confirms the reactivation of La Rouvi&amp;#232;re fault, with reverse slip at very shallow depth and two main slip patches reaching 30 cm and 24 cm of slip at 400-500m depth. We finally discuss how the 3D fault geometry and geological configuration could have impacted the slip distribution and propagation during the earthquake.&lt;/p&gt; &lt;p&gt;This study is a step to better quantify strain accumulation and assess the seismic hazard associated with other similar faults along the C&amp;#233;vennes fault system, in a densely populated area hosting several nuclear plants.&lt;/p&gt; &lt;/div&gt; &lt;/div&gt; &lt;/div&gt;


Sign in / Sign up

Export Citation Format

Share Document