Late Cenozoic stratigraphy and structure of the west margin of the central San Joaquin Valley, California

Author(s):  
William R. Lettis
2020 ◽  
Vol 12 (11) ◽  
pp. 4733
Author(s):  
Nigel W. T. Quinn

This paper provides a chronology and overview of events and policy initiatives aimed at addressing irrigation sustainability issues in the San Joaquin River Basin (SJRB) of California. Although the SJRB was selected in this case study, many of the same resource management issues are being played out in arid, agricultural regions around the world. The first part of this paper provides an introduction to some of the early issues impacting the expansion of irrigated agriculture primarily on the west side of the San Joaquin Valley and the policy and capital investments that were used to address salinity impairments to the use of the San Joaquin River (SJR) as an irrigation water supply. Irrigated agriculture requires large quantities of water if it is to be sustained, as well as supply water of adequate quality for the crop being grown. The second part of the paper addresses these supply issues and a period of excessive groundwater pumping that resulted in widespread land subsidence. A joint federal and state policy response that resulted in the facilities to import Delta water provided a remedy that lasted almost 50 years until the Sustainable Groundwater Management Act of 2014 was passed in the legislature to address a recurrence of the same issue. The paper describes the current state of basin-scale simulation modeling that many areas, including California, are using to craft a future sustainable groundwater resource management policy. The third section of the paper deals with unique water quality issues that arose in connection with the selenium crisis at Kesterson Reservoir and the significant threats to irrigation sustainability on the west side of the San Joaquin Valley that followed. The eventual policy response to this crisis was incremental, spanning two decades of University of California-led research programs focused on finding permanent solutions to the salt and selenium contamination problems constraining irrigated agriculture, primarily on the west side. Arid-zone agricultural drainage-induced water quality problems are becoming more ubiquitous worldwide. One policy approach that found traction in California is an innovative variant on the traditional Total Maximum Daily Load (TMDL) approach to salinity regulation, which has features in common with a scheme in Australia’s Hunter River Basin. The paper describes the real-time salinity management (RTSM) concept, which is geared to improving coordination of west side agricultural and wetland exports of salt load with east side tributary reservoir release flows to improve compliance with river salinity objectives. RTSM is a concept that requires access to continuous flow and electrical conductivity data from sensor networks located along the San Joaquin River and its major tributaries and a simulation model-based decision support designed to make salt load assimilative capacity forecasts. Web-based information dissemination and data sharing innovations are described with an emphasis on experience with stakeholder engagement and participation. The last decade has seen wide-scale, global deployment of similar technologies for enhancing irrigation agriculture productivity and protecting environmental resources.


2001 ◽  
Vol 138 (6) ◽  
pp. 653-668 ◽  
Author(s):  
GEORGIA PE-PIPER ◽  
DAVID J. W. PIPER

Nd isotopic composition has been determined for 16 igneous rocks, representing the wide geochemical, spatial and temporal range of post-collisional, late Cenozoic magmas in the Aegean area. Nd isotopes are used to further interpret previously published Pb and Sr isotope data. The overall pattern of late Cenozoic volcanism resulted from rapid extension, with thermal effects causing melting of hydrated, enriched, subcontinental lithosphere to produce widespread K-rich magmas. Slab break-off and intrusion of hot asthenosphere caused partial melting of rift-related continental margin basalts at the detachment point to generate adakitic magmas. Further outboard, mafic magma from enriched lithospheric mantle melted thickened lower crust to produce the granitoid plutons of the Cyclades. Nd isotopic variation in these varied rock types correlates with pre-Cenozoic palaeo-geography. Proterozoic subduction-related enrichment in Th and U, together with other large-ion lithophile elements, produced distinctive Pb isotope composition. This was later modified where Mesozoic subduction of terrigenous sediment was important, whereas subduction of oceanic carbonate sediments produced enrichment in radiogenic Sr and low Ce/Sr ratios. Late Cenozoic magmas sourced in eastern Pelagonian zone sub-continental lithospheric mantle have Nd model ages of about 1.0 Ga, and generally high 87Sr/86Sr and high 207Pb/204Pb (∼ 15.68) and 208Pb/204Pb (∼ 39.0) for low 206Pb/204Pb (∼ 18.6), but rocks to the west have more radiogenic Pb and higher Ce/Sr as a result of greater subduction of terrigenous sediment from the northern Pindos ocean. Magmas sourced from sub-continental lithosphere beneath the Apulian continental block were strongly influenced by subduction of oceanic crust and sediments north of the passive margin of north Africa. Subduction of Nile-derived terrigenous sediment in the east resulted in Nd model ages of 0.7 to 0.8 Ga and radiogenic Pb isotopes. Greater subduction of oceanic carbonate in the west resulted in magmas with higher 87Sr/86Sr and lower Ce/Sr. The strongly negative εNd for adakites in the central Aegean rules out a source from subducted oceanic basalt, and the adakite magma was probably derived from melting of hydrated Triassic sub-alkaline basalt of continental origin. Where trachytic rocks are succeeded by nepheline-normative basalts (e.g. Samos), Nd isotope data imply that early partial melting of the enriched subcontinental lithospheric mantle involved hydrous amphibole and phlogopite, but once these minerals were consumed, younger magmas were produced by partial melting dominated by olivine and orthopyroxene.


Sign in / Sign up

Export Citation Format

Share Document