Magnetostatic surface waves on a moving domain boundary in a garnet ferrite crystal

2000 ◽  
Vol 26 (10) ◽  
pp. 907-909
Author(s):  
E. A. Vilkov
2018 ◽  
Vol 60 (2) ◽  
pp. 294
Author(s):  
В.В. Зверев ◽  
И.М. Изможеров ◽  
Б.Н. Филиппов

AbstractThree-dimensional computer simulation of dynamic processes in a moving domain boundary separating domains in a soft magnetic uniaxial film with planar anisotropy is performed by numerical solution of Landau-Lifshitz-Gilbert equations. The developed visualization methods are used to establish the connection between the motion of surface vortices and antivortices, singular (Bloch) points, and core lines of intrafilm vortex structures. A relation between the character of magnetization dynamics and the film thickness is found. The analytical models of spatial vortex structures for imitation of topological properties of the structures observed in micromagnetic simulation are constructed.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Guangming Lu ◽  
Suzhi Li ◽  
Xiangdong Ding ◽  
Jun Sun ◽  
Ekhard K. H. Salje

Abstract Ferroelastic twin boundaries often have properties that do not exist in bulk, such as superconductivity, polarity etc. Designing and optimizing domain walls can hence functionalize ferroelastic materials. Using atomistic simulations, we report that moving domain walls have magnetic properties even when there is no magnetic element in the material. The origin of a robust magnetic signal lies in polar vortex structures induced by moving domain walls, e.g., near the tips of needle domains and near domain wall kinks. These vortices generate displacement currents, which are the origin of magnetic moments perpendicular to the vortex plane. This phenomenon is universal for ionic crystals and holds for all ferroelastic domain boundaries containing dipolar moments. The magnetic moment depends on the speed of the domain boundary, which can reach the speed of sound under strong mechanical forcing. We estimate that the magnetic moment can reach several tens of Bohr magnetons for a collective thin film of 1000 lattice planes and movements of the vortex by the speed of sound. The predicted magnetic fields in thin slabs are much larger than those observed experimentally in SrTiO3/LaAlO3 heterostructures, which may be due to weak (accidental) forcing and slow changes of the domain patterns during their experiments. The dynamical multiferroic properties of ferroelastic domain walls may have the potential to be used to construct localized magnetic memory devices in future.


2002 ◽  
Vol 28 (7) ◽  
pp. 595-596
Author(s):  
V. V. Randoshkin ◽  
V. A. Polezhaev ◽  
Yu. N. Sazhin ◽  
N. N. Sysoev ◽  
V. N. Dudorov

Domain Walls ◽  
2020 ◽  
pp. 293-310
Author(s):  
P. V. Yudin ◽  
L. J. McGilly

This chapter addresses the experimental control of ferroelectric DW motion in thin films using electron-beam induced deposition (EBID) electrodes with limited conductivity which governs the supply of charges required for DW nucleation and propagation. The problem of a moving domain boundary, addressed in this chapter, belongs to the general class of free-boundary problems, or Stefan problems, after Josef Stefan who mathematically described ice formation and then demonstrated generality of his approach by applying the same technique to describe diffusion. In the frame of this approach the position of the boundary is determined from the transport of a physical quantity, flowing through and partially consumed at the boundary. Nowadays mathematical modelling of Stefan problems has developed into a rich field of knowledge where both analytical and numerical methods are applied to solve various important applied tasks. In this chapter, the process is described by analogy to the classical Stefan model, historically applied to the motion of phase boundaries under propagation of heat but which is here applied to precisely describe DW motion under linear electrodes and the 2D growth of a circular domain.


2001 ◽  
Vol 27 (9) ◽  
pp. 728-730
Author(s):  
E. A. Vilkov ◽  
V. G. Shavrov ◽  
N. S. Shevyakhov

Author(s):  
C.Y. Yang ◽  
Z.R. Huang ◽  
Y.Q. Zhou ◽  
C.Z. Li ◽  
W.H. Yang ◽  
...  

Lanthanum aluminate(LaAlO3) single crystal as a substrate for high Tc superconducting film has attracted attention recently. We report here a transmission electron microscopy(TEM) study of the crystal structure and phase transformation of LaAlO3 by using Philips EM420 and EM430 microscopes. Single crystals of LaAlO3 were investigated first by optical microscope. Stripe-shaped domains of mm size are clearly seen(Fig.1a), and 90° domain boundary is also obvious. TEM specimens were prepared by mechanical grinding and polishing followed by ion-milling.Fig.lb shows μm size stripe domains of LaAlO3. Convergent beam electron diffraction patterns (CBED) from single domain were taken.Fig. 2a and Fig. 2c are [001] zone axis patterns which show a 4mm symmetry, and the (200) dark field of this zone axis gives 2mm symmetry(fig.2b). Therefore the point group of this crystal is either 4/mmm or m3m. The projection of the first order Laue zone(FOLZ) reflections on zero layer (fig. 2c) shows that the unit cell is face centered. A tetragonal unit ceil is chosen, with a=0.532nm and c=0.753nm, c being determined from the FOLZ ring diameter.


Sign in / Sign up

Export Citation Format

Share Document