Does the solar magnetic field increase?

2001 ◽  
Vol 27 (4) ◽  
pp. 260-266 ◽  
Author(s):  
V. A. Kotov ◽  
I. V. Kotova
2019 ◽  
Author(s):  
Michael Gedalin ◽  
Xiaoyan Zhou ◽  
Christopher T. Russell ◽  
Vassilis Angelopoulos

Abstract. Coherent downstream oscillations of the magnetic field in shocks are produced due to the coherent ion gyration and quasi-periodic variations of the ion pressure. The amplitude and the positions of the pressure maxima and minima depend on the cross-shock potential and upstream ion temperature. Two critical potentials are defined: the critical gyration potential (CGP) which separates the cases of increase or decrease of the normal velocity of the distribution center, and the critical reflection potential (CRP) above which ion reflection becomes significant. In weak very low β shocks CRP exceeds CGP. For potentials below CGP the first downstream maximum of the magnetic field is shifted farther downstream and is larger than the second one. For higher potentials the first maximum occurs just behind the ramp and is lower than the second one. With the increase of the upstream temperature CGP exceeds the CRP. For potentials below CRP the effects of ion reflection are negligible and the shock profile is similar to that of very low β shocks. If the potential exceeds CRP ion reflection is significant, the magnetic field increase toward the overshoot becomes steeper, and the largest peak occurs at the downstream edge of the ramp.


2012 ◽  
Vol 10 (H16) ◽  
pp. 86-89 ◽  
Author(s):  
J. Todd Hoeksema

AbstractThe almost stately evolution of the global heliospheric magnetic field pattern during most of the solar cycle belies the intense dynamic interplay of photospheric and coronal flux concentrations on scales both large and small. The statistical characteristics of emerging bipoles and active regions lead to development of systematic magnetic patterns. Diffusion and flows impel features to interact constructively and destructively, and on longer time scales they may help drive the creation of new flux. Peculiar properties of the components in each solar cycle determine the specific details and provide additional clues about their sources. The interactions of complex developing features with the existing global magnetic environment drive impulsive events on all scales. Predominantly new-polarity surges originating in active regions at low latitudes can reach the poles in a year or two. Coronal holes and polar caps composed of short-lived, small-scale magnetic elements can persist for months and years. Advanced models coupled with comprehensive measurements of the visible solar surface, as well as the interior, corona, and heliosphere promise to revolutionize our understanding of the hierarchy we call the solar magnetic field.


2006 ◽  
Vol 69 (3) ◽  
pp. 563-668 ◽  
Author(s):  
Sami K Solanki ◽  
Bernd Inhester ◽  
Manfred Schüssler

2014 ◽  
Vol 445 (1) ◽  
pp. 49-55 ◽  
Author(s):  
X. Y. Bai ◽  
Y. Y. Deng ◽  
F. Teng ◽  
J. T. Su ◽  
X. J. Mao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document