scholarly journals Overshoot dependence on the cross-shock potential

2019 ◽  
Author(s):  
Michael Gedalin ◽  
Xiaoyan Zhou ◽  
Christopher T. Russell ◽  
Vassilis Angelopoulos

Abstract. Coherent downstream oscillations of the magnetic field in shocks are produced due to the coherent ion gyration and quasi-periodic variations of the ion pressure. The amplitude and the positions of the pressure maxima and minima depend on the cross-shock potential and upstream ion temperature. Two critical potentials are defined: the critical gyration potential (CGP) which separates the cases of increase or decrease of the normal velocity of the distribution center, and the critical reflection potential (CRP) above which ion reflection becomes significant. In weak very low β shocks CRP exceeds CGP. For potentials below CGP the first downstream maximum of the magnetic field is shifted farther downstream and is larger than the second one. For higher potentials the first maximum occurs just behind the ramp and is lower than the second one. With the increase of the upstream temperature CGP exceeds the CRP. For potentials below CRP the effects of ion reflection are negligible and the shock profile is similar to that of very low β shocks. If the potential exceeds CRP ion reflection is significant, the magnetic field increase toward the overshoot becomes steeper, and the largest peak occurs at the downstream edge of the ramp.

2020 ◽  
Vol 38 (1) ◽  
pp. 17-26 ◽  
Author(s):  
Michael Gedalin ◽  
Xiaoyan Zhou ◽  
Christopher T. Russell ◽  
Vassilis Angelopoulos

Abstract. Coherent downstream oscillations of the magnetic field in shocks are produced due to the coherent ion gyration and quasiperiodic variations of the ion pressure. The amplitude and the positions of the pressure maxima and minima depend on the cross-shock potential and upstream ion temperature. Two critical cross-shock potentials are defined: the critical gyration potential (CGP), which separates the cases of increase or decrease in the component of the velocity of the distribution center along the shock normal, and the critical reflection potential (CRP), above which ion reflection becomes significant. In a weak, very low upstream kinetic-to-magnetic pressure ratio, β, the shocks' CRP exceeds the CGP. For potentials below the CGP, the first downstream maximum of the magnetic field is shifted farther downstream and is larger than the second maximum. For higher potentials, the first maximum occurs just behind the ramp and is lower than the second maximum. With the increase in the upstream temperature, the CGP exceeds the CRP. For potentials below the CRP, the effects of ion reflection are negligible and the shock profile is similar to that of very low-β shocks. If the potential exceeds the CRP, ion reflection is significant, the magnetic field increase toward the overshoot becomes steeper, and the largest peak occurs at the downstream edge of the ramp.


1967 ◽  
Vol 1 (1) ◽  
pp. 37-54 ◽  
Author(s):  
M. D. Cowley

Ionizing shocks for plane flows with the magnetic field lying in the flow plane are considered. The gas is assumed to be electrically conducting downstream, but non-conducting upstream. Shocks whose downstream state has a normal velocity component less than the slow magneto-acoustic-wave speed and whose upstream state is supersonic are found to be non-evolutionary in the face of plane magneto-acoustic disturbances, unless the upstream electric field in a frame of reference where the gas is at rest is arbitrary. Velocity conditions are also determined for shock stability with the electric field not arbitrary.Shock structures are found for the case of large ohmic diffusion, the initial temperature rise and ionization of the gas being caused by a thin transition having the properties of an ordinary gasdynamic shock. For the case where shocks are evolutionary when the upstream electric field is arbitrary, the shock structure requirements only restrict the electric field by limiting the range of possible values. When shocks are evolutionary with the electric field not arbitrary, they can only have a structure for a particular value of the electric field. Limits to the current carried by ionizing shocks and the effects of precursor ionization are discussed qualitatively.


2019 ◽  
Vol 85 (6) ◽  
Author(s):  
Alessandro Geraldini ◽  
F. I. Parra ◽  
F. Militello

The magnetic presheath is a boundary layer occurring when magnetized plasma is in contact with a wall and the angle $\unicode[STIX]{x1D6FC}$ between the wall and the magnetic field $\boldsymbol{B}$ is oblique. Here, we consider the fusion-relevant case of a shallow-angle, $\unicode[STIX]{x1D6FC}\ll 1$ , electron-repelling sheath, with the electron density given by a Boltzmann distribution, valid for $\unicode[STIX]{x1D6FC}/\sqrt{\unicode[STIX]{x1D70F}+1}\gg \sqrt{m_{\text{e}}/m_{\text{i}}}$ , where $m_{\text{e}}$ is the electron mass, $m_{\text{i}}$ is the ion mass, $\unicode[STIX]{x1D70F}=T_{\text{i}}/ZT_{\text{e}}$ , $T_{\text{e}}$ is the electron temperature, $T_{\text{i}}$ is the ion temperature and $Z$ is the ionic charge state. The thickness of the magnetic presheath is of the order of a few ion sound Larmor radii $\unicode[STIX]{x1D70C}_{\text{s}}=\sqrt{m_{\text{i}}(ZT_{\text{e}}+T_{\text{i}})}/ZeB$ , where e is the proton charge and $B=|\boldsymbol{B}|$ is the magnitude of the magnetic field. We study the dependence on $\unicode[STIX]{x1D70F}$ of the electrostatic potential and ion distribution function in the magnetic presheath by using a set of prescribed ion distribution functions at the magnetic presheath entrance, parameterized by $\unicode[STIX]{x1D70F}$ . The kinetic model is shown to be asymptotically equivalent to Chodura’s fluid model at small ion temperature, $\unicode[STIX]{x1D70F}\ll 1$ , for $|\text{ln}\,\unicode[STIX]{x1D6FC}|>3|\text{ln}\,\unicode[STIX]{x1D70F}|\gg 1$ . In this limit, despite the fact that fluid equations give a reasonable approximation to the potential, ion gyro-orbits acquire a spatial extent that occupies a large portion of the magnetic presheath. At large ion temperature, $\unicode[STIX]{x1D70F}\gg 1$ , relevant because $T_{\text{i}}$ is measured to be a few times larger than $T_{\text{e}}$ near divertor targets of fusion devices, ions reach the Debye sheath entrance (and subsequently the wall) at a shallow angle whose size is given by $\sqrt{\unicode[STIX]{x1D6FC}}$ or $1/\sqrt{\unicode[STIX]{x1D70F}}$ , depending on which is largest.


2009 ◽  
Vol 27 (1) ◽  
pp. 319-328 ◽  
Author(s):  
A. Runov ◽  
V. Angelopoulos ◽  
V. A. Sergeev ◽  
K.-H. Glassmeier ◽  
U. Auster ◽  
...  

Abstract. A sequence of magnetic field oscillations with an amplitude of up to 30 nT and a time scale of 30 min was detected by four of the five THEMIS spacecraft in the magnetotail plasma sheet. The probes P1 and P2 were at X=−15.2 and −12.7 RE and P3 and P4 were at X=−7.9 RE. All four probes were at −6.5>Y>−7.5 RE (major conjunction). Multi-point timing analysis of the magnetic field variations shows that fronts of the oscillations propagated flankward (dawnward and Earthward) nearly perpendicular to the direction of the magnetic maximum variation (B1) at velocities of 20–30 km/s. These are typical characteristics of current sheet flapping motion. The observed anti-correlation between ∂B1/∂t and the Z-component of the bulk velocity make it possible to estimate a flapping amplitude of 1 to 3 RE. The cross-tail scale wave-length was found to be about 5 RE. Thus the flapping waves are steep tail-aligned structures with a lengthwise scale of >10 RE. The intermittent plasma motion with the cross-tail velocity component changing its sign, observed during flapping, indicates that the flapping waves were propagating through the ambient plasma. Simultaneous observations of the magnetic field variations by THEMIS ground-based magnetometers show that the flapping oscillations were observed during the growth phase of a substorm.


Author(s):  
Chin-Yih Hong ◽  
Shieh-Yueh Yang ◽  
Herng-Er Horng ◽  
Hong-Chang Yang

A method involving the use of magnetic nanoparticles to suppress the cross-reactions in immunoassay is developed. Antibodies are coated onto magnetic nanoparticles. These antibodies bind with target and non-target molecules. Once an alternative-current magnetic field is applied, magnetic nanoparticles oscillate with the magnetic field. The target and non-target molecules attached onto magnetic nanoparticles via antibodies experience a centrifugal force, which is against the association between antibodies and target/non-target molecules. Theoretically, the centrifugal force is proportional to the square of the frequency of the applied magnetic field. Thus, the strength of the centrifugal force can be manipulated by changing the frequency of the applied magnetic field. By well controlling the frequency of applied magnetic field, the centrifugal force can be stronger than the binding between antibodies and non-target molecules, but still weaker than that of target molecules. Consequently, the binding between antibodies and non-target molecules is broken by the centrifugal force.


2021 ◽  
Author(s):  
Chuanpeng Hou ◽  
Xingyu Zhu ◽  
Rui Zhuo ◽  
Jiansen He

<p>Parker Solar Probe’s (PSP) observations near the sun show the extensive presence of magnetic field kinks (switchback for large kinks) in the slow solar wind. These kinks are usually accompanied by the enhancement of radial solar wind velocity and ion temperature, increasing or decreasing of number density. The magnetic field kinks have also been observed by WIND and Ulysses to exist near and beyond 1 AU, respectively. In this study, we statistically analyze the property difference of magnetic field kinks observed by PSP and WIND. We obtain the following four points of results. (1) Inside the PSP-kinks, the radial velocity and protons’ temperature increase while density shows enhancement or descent. However, inside the WIND-kinks, besides the slight enhancement of radial velocity, the density and temperature show no obvious change compared with the outside plasma. (2) By employing the Walen-test of kinks, we find that, R components of some PSP-kinks but not all satisfy the rotational discontinuity (RD) features, while the three components of most WIND-kinks well match the RD features. (3) The correlation between magnetic field and velocity inside the PSP-kinks and WIND-kinks does not show significant differences. (4) Both the PSP-kinks and WIND-kinks can be divided into two groups based on the histograms of θ<sub>Bn</sub>, where B is the background magnetic field, and n is the normal direction of kink. The first group (group-I) has θ<sub>Bn</sub> concentrating around 20° for PSP-kinks and 30° for WIND-kinks, indicating that the satellites were crossing the same kinked interplanetary magnetic field (IMF) from the upstream to the downstream. The second group (group-II) has θ<sub>Bn</sub> concentrating around 90° for PSP-kinks and WIND-kinks, suggesting that the satellites were crossing an interface between the unkinked and kinked IMF regions. Our findings help better understanding the nature of kinks and provide the observational basis for testifying models about radial propagation and evolution of magnetic field kinks.</p>


Sign in / Sign up

Export Citation Format

Share Document