Coordinate asymptotic behavior of the radial three-particle wave function for a bound state involving two charged particles

2005 ◽  
Vol 68 (8) ◽  
pp. 1372-1380 ◽  
Author(s):  
L. D. Blokhintsev ◽  
M. K. Ubaidullaeva ◽  
R. Yarmukhamedov
2021 ◽  
Author(s):  
Israel Fried

The book presents a new concept on several physics topics. The initial values are non-relativistic quantities of subatomic particles which the values obtained in experiments are actually their relativistic reflection. The subjects in the book are presented in such order that each new topic is based on the development of its predecessor that explains where it stems from. The book presents methods of analyzing traditional physics concepts to extract hidden embedded information that reveals new variables which are combined with those known. The new formulas yield results that match experiments accurately. It presents discoveries as: The electric charge of subatomic particle results directly from its OAM (Orbital Angular Momentum). OAM Offset exhibits neutral state. The electron mass is a magnitude that expresses quantitatively the square of its magnetic flux quantum, hence this mass in the Wave Function yields solutions that their squared values represent the flow pattern of magnetic flux surrounding electrons at energy levels, contrary to probability density describing odds of locating electron in atom. In calculation of hydrogen's wave function the electron and proton constitute one entity. Hence zero OAM at ground state determined by computational and experimental means is due to OAM offset of electron and proton rotation in opposite directions at center of mass. The proton, neutron and all baryons consist of three energy levels on which the quarks are orbiting. The third energy level of 80.5Gev plays a major role in the weak force while it is filled by charged mesons that are emitted thru W boson while acquiring the level's energy. The OAM of the orbiting quarks are third or two thirds of the reduced Planck constant. The proton missing spin is resolved by the OAM of quarks. The Electron is bound state composition of a negative Pion and an Electron's neutrino. The theory predicts a neutral boson of 160Gev (Accompanied by W+ boson from 240Gev decaying particle).


2021 ◽  
Author(s):  
Israel Fried

The book presents a new concept on several physics topics. The initial values are non-relativistic quantities of subatomic particles which the values obtained in experiments are actually their relativistic reflection. The subjects in the book are presented in such order that each new topic is based on the development of its predecessor that explains where it stems from. The book presents methods of analyzing traditional physics concepts to extract hidden embedded information that reveals new variables which are combined with those known. The new formulas yield results that match experiments accurately. It presents discoveries as: The electric charge of subatomic particle results directly from its OAM (Orbital Angular Momentum). OAM Offset exhibits neutral state. The electron mass is a magnitude that expresses quantitatively the square of its magnetic flux quantum, hence this mass in the Wave Function yields solutions that their squared values represent the flow pattern of magnetic flux surrounding electrons at energy levels, contrary to probability density describing odds of locating electron in atom. In calculation of hydrogen's wave function the electron and proton constitute one entity. Hence zero OAM at ground state determined by computational and experimental means is due to OAM offset of electron and proton rotation in opposite directions at center of mass. The proton, neutron and all baryons consist of three energy levels on which the quarks are orbiting. The third energy level of 80.5Gev plays a major role in the weak force while it is filled by charged mesons that are emitted thru W boson while acquiring the level's energy. The OAM of the orbiting quarks are third or two thirds of the reduced Planck constant. The proton missing spin is resolved by the OAM of quarks. The Electron is bound state composition of a negative Pion and an Electron's neutrino. The theory predicts a neutral boson of 160Gev (Accompanied by W+ boson from 240Gev decaying particle).


2021 ◽  
Author(s):  
Israel Fried

The book presents a new concept on several physics topics. The initial values are non-relativistic quantities of subatomic particles which the values obtained in experiments are actually their relativistic reflection. The subjects in the book are presented in such order that each new topic is based on the development of its predecessor that explains where it stems from. The book presents methods of analyzing traditional physics concepts to extract hidden embedded information that reveals new variables which are combined with those known. The new formulas yield results that match experiments accurately. It presents discoveries as: The electric charge of subatomic particle results directly from its OAM (Orbital Angular Momentum). OAM Offset exhibits neutral state. The electron mass is a magnitude that expresses quantitatively the square of its magnetic flux quantum, hence this mass in the Wave Function yields solutions that their squared values represent the flow pattern of magnetic flux surrounding electrons at energy levels, contrary to probability density describing odds of locating electron in atom. In calculation of hydrogen's wave function the electron and proton constitute one entity. Hence zero OAM at ground state determined by computational and experimental means is due to OAM offset of electron and proton rotation in opposite directions at center of mass. The proton, neutron and all baryons consist of three energy levels on which the quarks are orbiting. The third energy level of 80.5Gev plays a major role in the weak force while it is filled by charged mesons that are emitted thru W boson while acquiring the level's energy. The OAM of the orbiting quarks are third or two thirds of the reduced Planck constant. The proton missing spin is resolved by the OAM of quarks. The Electron is bound state composition of a negative Pion and an Electron's neutrino. The theory predicts a neutral boson of 160Gev (Accompanied by W+ boson from 240Gev decaying particle).


2021 ◽  
Author(s):  
Israel Fried

The book presents a new concept on several physics topics. The initial values are non-relativistic quantities of subatomic particles which the values obtained in experiments are actually their relativistic reflection. The subjects in the book are presented in such order that each new topic is based on the development of its predecessor that explains where it stems from. The book presents methods of analyzing traditional physics concepts to extract hidden embedded information that reveals new variables which are combined with those known. The new formulas yield results that match experiments accurately. It presents discoveries as: The electric charge of subatomic particle results directly from its OAM (Orbital Angular Momentum). OAM Offset exhibits neutral state. The electron mass is a magnitude that expresses quantitatively the square of its magnetic flux quantum, hence this mass in the Wave Function yields solutions that their squared values represent the flow pattern of magnetic flux surrounding electrons at energy levels, contrary to probability density describing odds of locating electron in atom. In calculation of hydrogen's wave function the electron and proton constitute one entity. Hence zero OAM at ground state determined by computational and experimental means is due to OAM offset of electron and proton rotation in opposite directions at center of mass. The proton, neutron and all baryons consist of three energy levels on which the quarks are orbiting. The third energy level of 80.5Gev plays a major role in the weak force while it is filled by charged mesons that are emitted thru W boson while acquiring the level's energy. The OAM of the orbiting quarks are third or two thirds of the reduced Planck constant. The proton missing spin is resolved by the OAM of quarks. The Electron is bound state composition of a negative Pion and an Electron's neutrino. The theory predicts a neutral boson of 160Gev (Accompanied by W+ boson from 240Gev decaying particle).


Author(s):  
Kenneth G. Dyall ◽  
Knut Faegri

The wave function is an elusive and somewhat mysterious object. Nobody has ever observed the wave function directly: rather, its existence is inferred from the various experiments whose outcome is most rationally explained using a wave function interpretation of quantum mechanics. Further, the N-particle wave function is a rather complicated construction, depending on 3N spatial coordinates as well as N spin coordinates, correlated in a manner that almost defies description. By contrast, the electron density of an N-electron system is a much simpler quantity, described by three spatial coordinates and even accessible to experiment. In terms of the wave function, the electron density is expressed as . . . ρ(r) = N ∫ Ψ* (r1,r2,...,rN)Ψ (r1,r2,...,rN)dr2dr3 ...drN (14.1) . . . where the sum over spin coordinates is implicit. It might be much more convenient to have a theory based on the electron density rather than the wave function. The description would be much simpler, and with a greatly reduced (and constant) number of variables, the calculation of the electron density would hopefully be faster and less demanding. We also note that given the correct ground state density, we should be able to calculate any observable quantity of a stationary system. The answer to these hopes is density functional theory, or DFT. Over the past decade, DFT has become one of the most widely used tools of the computational chemist, and in particular for systems of some size. This success has come despite complaints about arbitrary parametrization of potentials, and laments about the absence of a universal principle (other than comparison with experiment) that can guide improvements in the way the variational principle has led the development of wave-function-based methods. We do not intend to pursue that particular discussion, but we note as a historical fact that many important early contributions to relativistic quantum chemistry were made using DFT-like methods. Furthermore, there is every reason to try to extend the success of nonrelativistic DFT methods to the relativistic domain. We suspect that their potential for conquering a sizable part of this field is at least as large as it has been in the nonrelativistic domain.


Author(s):  
Eqab M. Rabei ◽  
Abdul-Wali Ajlouni ◽  
Humam B. Ghassib

Following our work on the quantization of nonconservative systems using fractional calculus, the canonical quantization of a system of free particles in a dissipative medium is carried out according to the Dirac method. A suitable Schro¨dinger equation is set up and solved for the Lagrangian representing this system. The wave function is plotted and the damping effect manifests itself very clearly. This formalism is then applied to the problem of energy loss of charged particles when passing through matter. The results are plotted and the relation between the energy loss and the range agrees qualitatively with experimental results.


2012 ◽  
Vol 18 ◽  
pp. 200-203
Author(s):  
J. N. DE QUADROS ◽  
D. HADJIMICHEF

The Fock-Tani representation, is a field theoretic formalism to treat problems involving both composite particles and their constituents. The application of the Fock-Tani transformation to a pair creation Hamiltonian produces the characteristic expansion in powers of the wave function. In lowest order of this expansion, we obtain the model known in the literature: the 3P0 model. In higher orders, the Corrected 3P0 model (C3P0) is obtained by introducing the bound state kernel. In this work, we use the C3P0 model to calculate the J/ψ decay rates in the following channels: ρ π, ω η, ω η′, K*+ K-, [Formula: see text], ϕ η, ϕ η′. We consider that the J/ψ is a mixture given by [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document