Density Functional Approaches to Relativistic Quantum Mechanics

Author(s):  
Kenneth G. Dyall ◽  
Knut Faegri

The wave function is an elusive and somewhat mysterious object. Nobody has ever observed the wave function directly: rather, its existence is inferred from the various experiments whose outcome is most rationally explained using a wave function interpretation of quantum mechanics. Further, the N-particle wave function is a rather complicated construction, depending on 3N spatial coordinates as well as N spin coordinates, correlated in a manner that almost defies description. By contrast, the electron density of an N-electron system is a much simpler quantity, described by three spatial coordinates and even accessible to experiment. In terms of the wave function, the electron density is expressed as . . . ρ(r) = N ∫ Ψ* (r1,r2,...,rN)Ψ (r1,r2,...,rN)dr2dr3 ...drN (14.1) . . . where the sum over spin coordinates is implicit. It might be much more convenient to have a theory based on the electron density rather than the wave function. The description would be much simpler, and with a greatly reduced (and constant) number of variables, the calculation of the electron density would hopefully be faster and less demanding. We also note that given the correct ground state density, we should be able to calculate any observable quantity of a stationary system. The answer to these hopes is density functional theory, or DFT. Over the past decade, DFT has become one of the most widely used tools of the computational chemist, and in particular for systems of some size. This success has come despite complaints about arbitrary parametrization of potentials, and laments about the absence of a universal principle (other than comparison with experiment) that can guide improvements in the way the variational principle has led the development of wave-function-based methods. We do not intend to pursue that particular discussion, but we note as a historical fact that many important early contributions to relativistic quantum chemistry were made using DFT-like methods. Furthermore, there is every reason to try to extend the success of nonrelativistic DFT methods to the relativistic domain. We suspect that their potential for conquering a sizable part of this field is at least as large as it has been in the nonrelativistic domain.

2020 ◽  
Vol 35 (21) ◽  
pp. 2050114
Author(s):  
M. Bauer ◽  
C. A. Aguillón ◽  
G. E. García

The problem of time in the quantization of gravity arises from the fact that time in Schrödinger’s equation is a parameter. This sets time apart from the spatial coordinates, represented by operators in quantum mechanics (QM). Thus “time” in QM and “time” in general relativity (GR) are seen as mutually incompatible notions. The introduction of a dynamical time operator in relativistic quantum mechanics (RQM), that follows from the canonical quantization of special relativity and that in the Heisenberg picture is also a function of the parameter [Formula: see text] (identified as the laboratory time), prompts to examine whether it can help to solve the disfunction referred to above. In particular, its application to the conditional interpretation of time in the canonical quantization approach to quantum gravity is developed.


2003 ◽  
Vol 02 (02) ◽  
pp. 301-322 ◽  
Author(s):  
Manoj K. Harbola ◽  
Arup Banerjee

In this paper we focus on the use of electron density and current-density as basic variables in describing a many-electron system. We start with a discussion of the seminal Thomas–Fermi theory and its extension by Bloch for time-dependent hamiltonians. We then present modern density-functional theory (for both time-independent and time-dependent hamiltonians) and approximations involved in implementing it. Also discussed is perturbation theory in terms of electron density and its use for calculating various response properties and related quantities. In particular, van der Waals coefficient C6 is calculated using density and current density in time-dependent perturbation theory. Throughout the paper, results for alkali-metal clusters are presented to demonstrate the strength of density-based theories.


Author(s):  
E. Schrödinger

The paper first scrutinizes thoroughly the variety of compositions which lead to the same quantum-mechanical mixture (as opposed to state or pure state). With respect to a given mixture every state has a definite probability (or mixing fraction) between 0 and 1 (including the limits), which is calculated from the mixtures Statistical Operator and the wave function of the state in question.A well-known example of mixtures occurs when a system consists of two separated parts. If the wave function of the whole system is known, either part is in the situation of a mixture, which is decomposed into definite constituents by a definite measuring programme to be carried out on the other part. All the conceivable decompositions (into linearly independent constituents) of the first system are just realized by all the possible measuring programmes that can be carried out on the second one. In general every state of the first system can be given a finite chance by a suitable choice of the programme.It is suggested that these conclusions, unavoidable within the present theory but repugnant to some physicists including the author, are caused by applying non-relativistic quantum mechanics beyond its legitimate range. An alternative possibility is indicated.


Dirac’s theory of relativistic quantum mechanics leads to the problem of solving a set of four partial differential equations for the four components of the wave function. Solutions of these equations in the case where the potential is a function of the radial co-ordinate only were obtained by Darwin. It is proved that these solutions form a complete set in the sense that we can simultaneously expand four arbitrary functions in terms of them.


2020 ◽  
pp. 154-168
Author(s):  
Alyssa Ney

The purpose of the present chapter is to respond to a thread of recent criticism against one candidate framework for interpreting quantum theories, a framework introduced and defended by David Albert and Barry Loewer: wave function realism, a framework for interpreting the ontology of quantum theories according to which what appears to be a nonseparable metaphysics ofentangled objects acting instantaneously across spatial distances is a manifestation of a more fundamental separable and local metaphysics in higher dimensions. Thechapterconsiders strategies for extending the wave function realist interpretation of quantum mechanics to the case of relativistic quantum theories, responding to arguments that this cannot be done.


1998 ◽  
Vol 51 (8) ◽  
pp. 643 ◽  
Author(s):  
Janusz Rak ◽  
Karol Krzyminski ◽  
Piotr Skurski ◽  
Ludwika Jozwiak ◽  
Antoni Konitz ◽  
...  

X-Ray diffraction has shown that N,N-dimethylacridin-9-amine (4) and N ,10-dimethylacridin-9-imine (5) both crystallize in the monoclinic space group P21/c (No. 14) with four molecules in the unit cell. The dimethylamino group in (4) is twisted through an angle of 58·6° relative to a nearly planar acridine moiety. On the other hand, the central ring in (5) is folded along the C(9) · · · N(10) axis through an angle of 26·3° and the exocyclic nitrogen atom with the methyl group attached to it is directed away from the concave side of the acridine nucleus. Theoretical ab initio Hartree–Fock (HF) and semiempirical (MNDO, AM1, PM3) quantum mechanics, as well as density functional (DFT) methods predicted that the N,N-dimethylacridin-9-amine molecule is planar within the acridine moiety and exhibits Cs symmetry, while the other four derivatives originating from the amino or imino tautomeric forms of acridin-9-amine do not have any symmetry elements. Molecules retaining the amino constitution are thermodynamically somewhat more stable than those arising from the imino form. The negative LUMO and HOMO energies, both predicted at the semiempirical level of theory and at the HF level in the latter case, imply that the relevant states are electronically stable. The comparable thermodynamic stabilities of both types of derivatives, as well as the fact that they can be synthesized, undoubtedly speak in favour of the existence of tautomeric phenomena in acridin-9-amine


2010 ◽  
Vol 25 (07) ◽  
pp. 479-487 ◽  
Author(s):  
T. GOLDMAN

A description of neutrino oscillation phenomena is presented which is based on relativistic quantum mechanics with four-momentum conservation. This is different from both conventional approaches which arbitrarily use either equal energies or equal momenta for the different neutrino mass eigenstates. Both entangled state and source dependence aspects are also included. The time dependence of the wave function is found to be crucial to recovering the conventional result to second order in the neutrino masses. An ambiguity appears at fourth order which generally leads to source dependence, but the standard formula can be promoted to this order by a plausible convention.


2009 ◽  
Vol 24 (22) ◽  
pp. 4157-4167 ◽  
Author(s):  
VICTOR L. MIRONOV ◽  
SERGEY V. MIRONOV

We demonstrate a generalization of relativistic quantum mechanics using eight-component octonic wave function and octonic spatial operators. It is shown that the second-order equation for octonic wave function describing particles with spin 1/2 can be reformulated in the form of a system of first-order equations for quantum fields, which is analogous to the system of Maxwell equations for the electromagnetic field. It is established that for the special types of wave functions the second-order equation can be reduced to the single first-order equation analogous to the Dirac equation. At the same time it is shown that this first-order equation describes particles, which do not have quantum fields.


2015 ◽  
Vol 3 (2) ◽  
pp. 204-221 ◽  
Author(s):  
Wenjian Liu

Abstract Any quantum mechanical calculation on electronic structure ought to choose first an appropriate Hamiltonian H and then an Ansatz for parameterizing the wave function Ψ, from which the desired energy/property E(λ) can finally be calculated. Therefore, the very first question is: what is the most accurate many-electron Hamiltonian H? It is shown that such a Hamiltonian i.e. effective quantum electrodynamics (eQED) Hamiltonian, can be obtained naturally by incorporating properly the charge conjugation symmetry when normal ordering the second quantized fermion operators. Taking this eQED Hamiltonian as the basis, various approximate relativistic many-electron Hamiltonians can be obtained based entirely on physical arguments. All these Hamiltonians together form a complete and continuous ‘Hamiltonian ladder’, from which one can pick up the right one according to the target physics and accuracy. As for the many-electron wave function Ψ, the most intriguing questions are as follows. (i) How to do relativistic explicit correlation? (ii) How to handle strong correlation? Both general principles and practical strategies are outlined here to handle these issues. Among the electronic properties E(λ) that sample the electronic wave function nearby the nuclear region, nuclear magnetic resonance (NMR) shielding and nuclear spin-rotation (NSR) coupling constant are especially challenging: they require body-fixed molecular Hamiltonians that treat both the electrons and nuclei as relativistic quantum particles. Nevertheless, they have been formulated rigorously. In particular, a very robust ‘relativistic mapping’ between the two properties has been established, which can translate experimentally measured NSR coupling constants to very accurate absolute NMR shielding scales that otherwise cannot be obtained experimentally. Since the most general and fundamental issues pertinent to all the three components of the quantum mechanical equation HΨ = EΨ (i.e. Hamiltonian H, wave function Ψ, and energy/property E(λ)) have fully been understood, the big picture of relativistic molecular quantum mechanics can now be regarded as established.


Sign in / Sign up

Export Citation Format

Share Document