Changes in the Antibacterial Activity of Benzylpenicillin Exposed to a Pulsed High-Intensity Magnetic Field

BIOPHYSICS ◽  
2019 ◽  
Vol 64 (2) ◽  
pp. 214-223
Author(s):  
V. A. Glushchenkov ◽  
T. I. Vasilyeva ◽  
P. P. Purigin ◽  
I. A. Belyaeva ◽  
N. A. Rodenko ◽  
...  
2019 ◽  
Vol 88 (3) ◽  
pp. 30801
Author(s):  
Shen Gao ◽  
Jianyuan Feng ◽  
Wenqi Li ◽  
Jihe Cai

The influence of magnetic field on DC radial glow plasma was studied by self-designed coaxial glow discharge device, and the influence of magnetic field on the spatial distribution of plasma density is studied. The experimental results show that the spatial density distribution of plasma from cathode to anode increases gradually in the high-intensity magnetic field, and decreases gradually in the absence of magnetic field. Theoretical analysis of the above results show that the high-intensity magnetic field increases the moving path of the electrons, enhances the collision efficiency between the electrons and the neutral atoms, and makes the discharge plasma density remarkably enhanced.


2012 ◽  
Vol 190 ◽  
pp. 713-716
Author(s):  
Tara Ahmadi

There are various methods to shield spacecraft from energetic particles, like one based on the usage of the permanent magnets. At the same time this method is not perfect; it only suggests low intensity magnetic field because of neglecting galactic cosmic radiation effects on human body. In this paper, hyper thin rings as a shield for spacecraft are suggested. Although these rings are lighter than permanent magnets, their ability to protect spaceship with a safe and high intensity magnetic field is higher than the magnets.


2011 ◽  
Vol 509 (33) ◽  
pp. 8475-8477 ◽  
Author(s):  
C.Z. Liu ◽  
T.Y. Kang ◽  
W. Wei ◽  
K. Zheng ◽  
L. Fu ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 563
Author(s):  
Junhui Xiao ◽  
Kai Zou ◽  
Tao Chen ◽  
Wenliang Xiong ◽  
Bing Deng

In this research, the coarse manganese concentrate was collected from a manganese ore concentrator in Tongren of China, and the contents of manganese and iron in coarse manganese concentrate were 28.63% and 18.65%, respectively. The majority of the minerals in coarse manganese concentrate occur in rhodochrosite, limonite, quartz, olivine, etc. Calcium chloride, calcium hypochlorite, coke, and coarse manganese concentrate were placed in a roasting furnace to conduct segregation roasting, which resulted in a partial chlorination reaction of iron to produce FeCl3, ferric chloride reduced to metallic iron and adsorbed onto the coke, and rhodochrosite broken down into manganese oxide. Iron was extracted from the roasted ore using low-intensity magnetic separation, and manganese was further extracted from the low-intensity magnetic separation tailings by high-intensity magnetic separation. The test results showed that iron concentrate with an iron grade of 78.63% and iron recovery of 83.60%, and manganese concentrate with a manganese grade of 54.04% and manganese recovery of 94.82% were obtained under the following optimal conditions: roasting temperature of 1273 K, roasting time of 60 min, calcium chloride dosage of 10%, calcium hypochlorite dosage of 5%, coke dosage of 10%, coke size of −1 mm, grinding fineness of −0.06 mm occupying 90%, low-intensity magnetic field intensity of 0.14 T, and high-intensity magnetic field intensity of 0.65 T. Most minerals in the iron concentrate were Fe, Fe3O4, and a small amount of SiO2 and CaSiO3; the main minerals in the manganese were MnO, and a small amount of Fe3O4, SiO2, and CaSiO3. The thermodynamic calculation results are in good agreement with the test results.


Toxicology ◽  
2003 ◽  
Vol 187 (2-3) ◽  
pp. 171-181 ◽  
Author(s):  
Hossam M.M Arafa ◽  
Adel R.A Abd-Allah ◽  
Mohamad A El-Mahdy ◽  
Laila A Ramadan ◽  
Farid M.A Hamada

Sign in / Sign up

Export Citation Format

Share Document