Radiative Fraction and Flame Length of Propane Jet Diffusion Flames in a Crossflow

2020 ◽  
Vol 56 (4) ◽  
pp. 375-382
Author(s):  
J.-W. Wang ◽  
J. Fang ◽  
J.-F. Guan ◽  
L.-Y. Zhao ◽  
S.-B. Lin ◽  
...  
1996 ◽  
Vol 118 (2) ◽  
pp. 128-133 ◽  
Author(s):  
X. Li

Length of jet diffusion flames is of direct importance in many industrial processes and is analyzed by applying scaling method directly to the governing partial differential equations. It is shown that for jet-momentum-dominated diffusion flames, when the buoyancy effects are neglected, the flame length normalized by the burner exit diameter increases linearly with the Reynolds number at the burner exit in the laminar burning regime and decreases in inverse proportion to the Reynolds number in the transitional regime. For turbulent diffusion flames, the normalized flame lengths are independent of the burner exit flow conditions. It is further found that for vertical upward flames, the buoyancy effect increases the flame length in the laminar and transitional regime and reduces the length in the turbulent regime; while for vertical downward flames, the buoyancy effect decreases the flame length in the laminar and transitional regime and increases the length in the turbulent regime, provided that jet momentum is dominated, and there is no flame spreading out and then burning upward like a downward-facing pool fire. Hence, for turbulent flames the flame lengths depend on the Froude number, Fr, and increase (or decrease) slightly as Fr increases for upward (or downward) flames. By comparison, it is found that the foregoing theoretical results are in good agreement with the experimental observations reported in literature.


2004 ◽  
Vol 128 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Jorge R. Camacho ◽  
Ahsan R. Choudhuri

Buoyant and nonbuoyant shapes of methane flames issued from a 2:1 aspect ratio elliptic tube burner were measured. Nonbuoyant conditions were obtained in the KC-135 microgravity research aircraft operated by NASA’s Johnson Space Center. A mathematical model based on the extended Burke-Schumann flame theory is developed to predict the flame length of an elliptic burner. The model utilizes Roper’s theoretical method for circular burners and extends the analysis for elliptic burners. The predicted flame length using the theoretical model agrees well with experimental measurements. In general for the elliptic burner the nonbuoyant flames are longer than the buoyant flames. However, measured lengths of both buoyant and nonbuoyant flame lengths change proportionally with the volumetric fuel flow rate and support the L vs Q correlation. The maximum flame width measured at buoyant and nonbuoyant conditions also show a proportional relation with the volumetric fuel flow rate. Normalized buoyant and nonbuoyant flame lengths of the elliptic burner correlate (L∕d∝Re) with the jet exit Reynolds number and exhibit a higher slope compared to a circular burner. Normalized flame width data show a power correlation (w∕d=cFrn) with the jet exit Froude number.


1997 ◽  
Author(s):  
M. Bahadori ◽  
L. Zhou ◽  
D. Stocker ◽  
M. Bahadori ◽  
L. Zhou ◽  
...  

2000 ◽  
Author(s):  
Mark Wernet ◽  
Paul Greenberg ◽  
Peter Sunderland ◽  
William Yanis

2006 ◽  
Vol 145 (3) ◽  
pp. 481-494 ◽  
Author(s):  
Chih-Yung Wu ◽  
Yei-Chin Chao ◽  
Tsarng-Sheng Cheng ◽  
Yueh-Heng Li ◽  
Kuo-Yuan Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document