laminar jet
Recently Published Documents


TOTAL DOCUMENTS

294
(FIVE YEARS 27)

H-INDEX

30
(FIVE YEARS 2)

2022 ◽  
Vol 934 ◽  
Author(s):  
L.R. Gareev ◽  
J.S. Zayko ◽  
A.D. Chicherina ◽  
V.V. Trifonov ◽  
A.I. Reshmin ◽  
...  

We study the development of perturbations in a submerged air jet with a round cross-section and a long laminar region (five jet diameters) at a Reynolds number of 5400 by both inviscid linear stability theory and experiments. The theoretical analysis shows that there are two modes of growing axisymmetric perturbations, which are generated by three generalized inflection points of the jet's velocity profile. To validate the results of linear stability theory, we conduct experiments with controlled axisymmetric perturbations to the jet. The characteristics of growing waves are obtained by visualization, thermoanemometer measurements and correlation analysis. Experimentally measured wavelengths, growth rates and spatial distributions of velocity fluctuations for both growing modes are in good agreement with theoretical calculations. Therefore, it is demonstrated that small perturbations to the laminar jet closely follow the predictions of inviscid linear stability theory.


Author(s):  
Bhimsen Shivamoggi ◽  
G Heijst ◽  
Leon Kamp

Abstract The Okubo [5]-Weiss [6] criterion has been extensively used as a diagnostic tool to divide a two-dimensional (2D) hydrodynamical flow field into hyperbolic and elliptic regions and to serve as a useful qualitative guide to the complex quantitative criteria. The Okubo-Weiss criterion is frequently validated on empirical grounds by the results ensuing its application. So, we will explore topological implications into the Okubo-Weiss criterion and show the Okubo-Weiss parameter is, to within a positive multiplicative factor, the negative of the Gaussian curvature of the underlying vorticity manifold. The Okubo-Weiss criterion is reformulated in polar coordinates, and is validated via several examples including the Lamb- Oseen vortex, and the Burgers vortex. These developments are then extended to 2D quasi- geostrophic (QG) flows. The Okubo-Weiss parameter is shown to remain robust under the -plane approximation to the Coriolis parameter. The Okubo-Weiss criterion is shown to be able to separate the 2D flow-field into coherent elliptic structures and hyperbolic flow configurations very well via numerical simulations of quasi-stationary vortices in QG flows. An Okubo-Weiss type criterion is formulated for 3D axisymmetric flows, and is validated via application to the round Landau-Squire Laminar jet flow.


2021 ◽  
Vol 2127 (1) ◽  
pp. 012017
Author(s):  
V A Arbuzov ◽  
E V Arbuzov ◽  
Yu N Dubnishchev ◽  
O S Zolotukhina ◽  
V V Lukashov

Abstract Work motivation – adaptation of optical Hilbert diagnostic methods for visualization and study of optical density and phase temperature fields in the structure of an axisymmetric diffusion hydrogen-air flame. The diagnostic complex is implemented on the basis of the IAB-451 device with modified blocks of optical filtering, information source and processing. A laminar jet flame H2/N2 in still air is considered. The investigated torch is oriented vertically. Visualization of phase disturbances induced by the medium under study in a multi-wavelength probing (λ1 = 636 nm, λ2 = 537 nm and λ3 = 466 nm) light field is performed using polychromatic Hilbert and Foucault-Hilbert transformations in combination with registration and pixel-by-pixel processing of the dynamic RGB image structure. The dynamic phase structure of the diffusion flame is visualized. The initial temperature approximation, based on the assumption of an air mixture, is corrected so that the calculated hilbertogram matches the measured one as closely as possible. The data obtained are in good agreement with the results of thermocouple measurements. The temperature was recorded by thermocouples at reference points. The phase function is reconstructed in axisymmetric sections from RGB-hilbertograms. The reliability of the results is confirmed by comparing the experimentally obtained hilbertograms and hilbertograms reconstructed from phase structures using the Abel transform.


2021 ◽  
Author(s):  
Abhisek Ganguly ◽  
Shantanu Pramanik ◽  
Orkodip Mookherjee ◽  
Sayantan Sengupta

Abstract Thermofluid dynamics of an unconfined steady two-dimensional laminar jet impinging on an isothermal protruded heater is numerically studied for low jet inlet Reynolds number (Re) between 50 and 250. Results are shown for a range of impingement distance h/W between 1 to 10 for Prandtl numbers (Pr) 0.71 and 7.56. The volumetric entrainment increases with increasing h/W and decreasing Re. The reattachment distance of the wall jet appears to increase with Re and shows discernible deviation from the backward-facing step flow prediction for Re>150. Correlations are presented for average heater surface and sidewall Nusselt numbers as functions of Re and h/W for Pr=0.71 and Pr=7.56. In an overall convection dominant heat transfer, a relatively warmer and diffusion-dominated recirculation zone is identified adjacent to the sidewall with a low Nusselt number, which enhances significantly at Pr=7.56 when Re is increased beyond 100. At a low impingement distance, integrated kinetic energy flux shows greater magnitude in the impingement region but with a higher decay rate. The integrated heat flux is greatly influenced by Re, and the effect is more pronounced at Pr=0.71. Self-similar behavior is observed for the velocity and heat flux profiles throughout the length in the developed region and for the temperature distribution over the heater. Both high Re and high h/W seem to adversely affect the self-similar behavior owing to a slower wall jet development.


2021 ◽  
Vol 143 (7) ◽  
Author(s):  
Michael Mair ◽  
Marko Bacic

Abstract This paper investigates an ultrasonically driven bistable fluidic diverter at inlet nozzle Mach numbers of up to Mn = 0.3 and operating pressure ratios of up to Pr = 1.1. Part I examines the switching characteristics with respect to nondimensional parameters of excitation amplitude, frequency, required energy, switching time and inlet total pressure. It is shown that to promote switching at turbulent jet Mach numbers of up to Mn = 0.3 it is necessary to excite a jet preferred mode of St = 0.45 which differs from previously reported laminar jet operation of the similar device. For the reference case the switching time amounts to 1.2 ms suggesting oscillation frequencies of up to 500 Hz. Part II is a combined experimental and numerical study that examines the triggered instability modes in the free shear layer using large eddy simulations (LES) and visualizes the flow field using Particle Image Velocimetry (PIV).


2021 ◽  
Vol 5 ◽  
pp. 1
Author(s):  
Francis Pagaud ◽  
Léa Delance

By putting a ball on a flat surface under a jet of water, one may observe spontaneous oscillations of the ball of well-defined amplitude and frequency. As a simpler conformation, the study of a cylinder shows that the mere effect of the jet is sufficient to observe an oscillation for a certain range of parameters such as the curvature of the object and the characteristics of the jet. An empirical model of the forces strengthened by direct measurements of the forces and torque allowed us to predict a theoretical period of 0.64 s when the experimental one was 0.80 s. Further, the origin of the oscillation was determined to be a dynamic hysteresis of the torque as it is deflected on one side of the can even when the jet hits its center. This phenomenon results in a gain of energy that counterbalances the losses by friction and leads to oscillations. Domain of oscillation is also shortly addressed while improvements of the theoretical model and other experiments are suggested as well.


2020 ◽  
Vol 1677 ◽  
pp. 012018
Author(s):  
V Lemanov ◽  
V Matyunin ◽  
Z Travnicek

2020 ◽  
Vol 19 ◽  
pp. 100649
Author(s):  
K. Barik ◽  
B. Swain ◽  
A. Behera ◽  
S. Chitransh ◽  
S.S. Mohapatra

Sign in / Sign up

Export Citation Format

Share Document