Constructive Method for Solving a Boundary Value Problem with Impedance Boundary Condition for the Helmholtz Equation

2018 ◽  
Vol 54 (4) ◽  
pp. 539-550 ◽  
Author(s):  
E. H. Khalilov
2009 ◽  
Vol 06 (03) ◽  
pp. 577-614 ◽  
Author(s):  
GILLES CARBOU ◽  
BERNARD HANOUZET

The electromagnetic wave propagation in a nonlinear medium is described by the Kerr model in the case of an instantaneous response of the material, or by the Kerr–Debye model if the material exhibits a finite response time. Both models are quasilinear hyperbolic and are endowed with a dissipative entropy. The initial-boundary value problem with a maximal-dissipative impedance boundary condition is considered here. When the response time is fixed, in both the one-dimensional and two-dimensional transverse electric cases, the global existence of smooth solutions for the Kerr–Debye system is established. When the response time tends to zero, the convergence of the Kerr–Debye model to the Kerr model is established in the general case, i.e. the Kerr model is the zero relaxation limit of the Kerr–Debye model.


1996 ◽  
Vol 04 (01) ◽  
pp. 89-100 ◽  
Author(s):  
J. S. PAPADAKIS ◽  
B. PELLONI

The impedance boundary condition for the parabolic approximation is derived in the case of a sea bottom profile sloping at a constant angle, as a non-local boundary condition imposed exactly at the interface. This condition is integrated into the IFD code for the numerical computation of the pressure field and implemented to test its accuracy in some benchmark cases, for which the backscattered field is negligible. It is shown that by avoiding the sloping interface, the results obtained are closer to the benchmark results given by normal mode codes solving the full Helmholtz equation, such as the 2-way COUPLE code, than those of the standard IFD or other 1-way codes, at least for problems that do not have significant backscattering effects.


2019 ◽  
Vol 488 (3) ◽  
pp. 233-236
Author(s):  
A. R. Aliev ◽  
R. J. Heydarov

In this work, we present a justification of collocation method for integral equation of the impedance boundary value problem for the Helmholtz equation. We also build a sequence which converges to the exact solution of our problem and we obtain an error estimate.


Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 436-443 ◽  
Author(s):  
Angela Handlovičová ◽  
Izabela Riečanová

AbstractIn this paper, the numerical solution to the Helmholtz equation with impedance boundary condition, based on the Finite volume method, is discussed. We used the Robin boundary condition using exterior points. Properties of the weak solution to the Helmholtz equation and numerical solution are presented. Further the numerical experiments, comparing the numerical solution with the exact one, and the computation of the experimental order of convergence are presented.


2015 ◽  
Vol 770 ◽  
pp. 531-534
Author(s):  
Valeriy Sosnov

In this paper control problems for 2-D Helmholtz equation are formulated and investigated. These problems are associated with developing technology of acoustic cloaking. Helmholtz equation is considered in an unbounded domain with the impedance boundary condition. The role of control in control problems under study is played by surface impedance.


Sign in / Sign up

Export Citation Format

Share Document