Restoration of the proton density distribution in the Earth’s plasmasphere from measurements along the INTERBALL-1 satellite orbit

2012 ◽  
Vol 52 (6) ◽  
pp. 725-729 ◽  
Author(s):  
M. I. Verigin ◽  
G. A. Kotova ◽  
V. V. Bezrukikh ◽  
O. S. Aken’tieva
2020 ◽  
Vol 4 (1) ◽  
pp. 1-6
Author(s):  
Jing Wang ◽  
◽  
XiaoJun Xu ◽  
Jiang Yu ◽  
YuDong Ye ◽  
...  

Author(s):  
Akhilesh Yadav ◽  
A. Shukla ◽  
Sven Åberg

We have performed a systematic study for the nuclear structure of superheavy nuclei with a special emphasis on the nuclei with possible central depletion of proton and neutron density in the mass region [Formula: see text] using the Relativistic Hartree–Bogoliubov (RHB) framework. It has been observed that in the case of neutron density distribution, the occurrence of central depletion is related to the occupancy of 4s orbital and it is found to decrease with increasing occupancy of the 4s orbital. On the other hand, in the case of proton density distribution, the central density depletion is mainly due to the lowering of weakly bound p-orbital states close to the continuum as it is energetically favored to lower the Coulomb repulsion in the case of superheavy nuclei. Also, occupation probability of the lower angular momentum states (p-orbitals) lying near the Fermi level is strongly suppressed due to the weak centrifugal barrier and strong Coulomb repulsion in comparison to large angular momentum states (contributing to surface region mainly), resulting in central density depletion. Among the considered cases in the present work, the maximum depletion is observed for [Formula: see text] and for [Formula: see text]Og under spherically symmetric and axially deformed cases, respectively.


2020 ◽  
Vol MA2020-02 (33) ◽  
pp. 2101-2101
Author(s):  
Jacob A Spooner ◽  
Mohammad J Eslamibidgoli ◽  
Kourosh Malek ◽  
Michael H Eikerling

2016 ◽  
Vol 262 ◽  
pp. 133-140 ◽  
Author(s):  
Amin Nouri-Khorasani ◽  
Kourosh Malek ◽  
Ali Malek ◽  
Tetsuya Mashio ◽  
David P. Wilkinson ◽  
...  

1966 ◽  
Vol 25 ◽  
pp. 363-371
Author(s):  
P. Sconzo

In this paper an orbit computation program for artificial satellites is presented. This program is operational and it has already been used to compute the orbits of several satellites.After an introductory discussion on the subject of artificial satellite orbit computations, the features of this program are thoroughly explained. In order to achieve the representation of the orbital elements over short intervals of time a drag-free perturbation theory coupled with a differential correction procedure is used, while the long range behavior is obtained empirically. The empirical treatment of the non-gravitational effects upon the satellite motion seems to be very satisfactory. Numerical analysis procedures supporting this treatment and experience gained in using our program are also objects of discussion.


Author(s):  
R. A. Crowther

The reconstruction of a three-dimensional image of a specimen from a set of electron micrographs reduces, under certain assumptions about the imaging process in the microscope, to the mathematical problem of reconstructing a density distribution from a set of its plane projections.In the absence of noise we can formulate a purely geometrical criterion, which, for a general object, fixes the resolution attainable from a given finite number of views in terms of the size of the object. For simplicity we take the ideal case of projections collected by a series of m equally spaced tilts about a single axis.


Author(s):  
H.-J. Cantow ◽  
H. Hillebrecht ◽  
S. Magonov ◽  
H. W. Rotter ◽  
G. Thiele

From X-ray analysis, the conclusions are drawn from averaged molecular informations. Thus, limitations are caused when analyzing systems whose symmetry is reduced due to interatomic interactions. In contrast, scanning tunneling microscopy (STM) directly images atomic scale surface electron density distribution, with a resolution up to fractions of Angstrom units. The crucial point is the correlation between the electron density distribution and the localization of individual atoms, which is reasonable in many cases. Thus, the use of STM images for crystal structure determination may be permitted. We tried to apply RuCl3 - a layered material with semiconductive properties - for such STM studies. From the X-ray analysis it has been assumed that α-form of this compound crystallizes in the monoclinic space group C2/m (AICI3 type). The chlorine atoms form an almost undistorted cubic closed package while Ru occupies 2/3 of the octahedral holes in every second layer building up a plane hexagon net (graphite net). Idealizing the arrangement of the chlorines a hexagonal symmetry would be expected. X-ray structure determination of isotypic compounds e.g. IrBr3 leads only to averaged positions of the metal atoms as there exist extended stacking faults of the metal layers.


Sign in / Sign up

Export Citation Format

Share Document