density depletion
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 15)

H-INDEX

13
(FIVE YEARS 0)

Author(s):  
Akhilesh Yadav ◽  
A. Shukla ◽  
Sven Åberg

We have performed a systematic study for the nuclear structure of superheavy nuclei with a special emphasis on the nuclei with possible central depletion of proton and neutron density in the mass region [Formula: see text] using the Relativistic Hartree–Bogoliubov (RHB) framework. It has been observed that in the case of neutron density distribution, the occurrence of central depletion is related to the occupancy of 4s orbital and it is found to decrease with increasing occupancy of the 4s orbital. On the other hand, in the case of proton density distribution, the central density depletion is mainly due to the lowering of weakly bound p-orbital states close to the continuum as it is energetically favored to lower the Coulomb repulsion in the case of superheavy nuclei. Also, occupation probability of the lower angular momentum states (p-orbitals) lying near the Fermi level is strongly suppressed due to the weak centrifugal barrier and strong Coulomb repulsion in comparison to large angular momentum states (contributing to surface region mainly), resulting in central density depletion. Among the considered cases in the present work, the maximum depletion is observed for [Formula: see text] and for [Formula: see text]Og under spherically symmetric and axially deformed cases, respectively.


2021 ◽  
Author(s):  
Kosuke Ishii ◽  
Tetsuo Sakka ◽  
Naoya Nishi

<div> <p>The structure at the electrochemical liquid/liquid interface between water (W) and trioctylmethylammonium bis (nonafluorobutanesulfonyl)amide, a hydrophobic ionic liquid (IL), was studied using molecular dynamics (MD) simulation in which the interfacial potential difference was controlled. On the IL side of the IL|W interface, ionic multilayers were found in the number density distribution of IL ions whereas monolayer-thick charge accumulation was found in the charge density distribution. This suggests that the potential screening is completed within the first ionic layer and the effect of overlayers on the potential is marginal. The W side of the interface showed the diffuse electric double layer as expected, and also unveiled a density depletion layer, indicating that the IL surface is hydrophobic enough to be repelled by water. The IL ions in the first ionic layer showed anisotropic orientation even at the potential of zero charge, in which the polar moieties were oriented to the W side and the non-polar moieties preferred parallel to the interface. When an electric field is applied across the interface so that the IL ions are more accumulated, the non-polar moieties changed the parallel preference to more oriented to the IL side due to the dipolar nature of the IL ions. The ionic orientations at the IL|W interface were compared with those at other two IL interfaces, the vacuum and graphene interfaces of the IL. The parallel preference of the non-polar moieties was similar at the IL|graphene interface but different from the perpendicular orientation toward the vacuum side at the IL|vacuum interface. The comparison suggests that water behaves like a wall repelling IL ions like a solid electrode.</p></div>


2021 ◽  
Author(s):  
Kosuke Ishii ◽  
Tetsuo Sakka ◽  
Naoya Nishi

<div> <p>The structure at the electrochemical liquid/liquid interface between water (W) and trioctylmethylammonium bis (nonafluorobutanesulfonyl)amide, a hydrophobic ionic liquid (IL), was studied using molecular dynamics (MD) simulation in which the interfacial potential difference was controlled. On the IL side of the IL|W interface, ionic multilayers were found in the number density distribution of IL ions whereas monolayer-thick charge accumulation was found in the charge density distribution. This suggests that the potential screening is completed within the first ionic layer and the effect of overlayers on the potential is marginal. The W side of the interface showed the diffuse electric double layer as expected, and also unveiled a density depletion layer, indicating that the IL surface is hydrophobic enough to be repelled by water. The IL ions in the first ionic layer showed anisotropic orientation even at the potential of zero charge, in which the polar moieties were oriented to the W side and the non-polar moieties preferred parallel to the interface. When an electric field is applied across the interface so that the IL ions are more accumulated, the non-polar moieties changed the parallel preference to more oriented to the IL side due to the dipolar nature of the IL ions. The ionic orientations at the IL|W interface were compared with those at other two IL interfaces, the vacuum and graphene interfaces of the IL. The parallel preference of the non-polar moieties was similar at the IL|graphene interface but different from the perpendicular orientation toward the vacuum side at the IL|vacuum interface. The comparison suggests that water behaves like a wall repelling IL ions like a solid electrode.</p></div>


2021 ◽  
Author(s):  
Saliha Eren ◽  
Ingrid Mann

&lt;p&gt;This presentation is related to model calculations of the circumsolar dust brightness that is seen in the F-corona and inner Zodiacal light. We calculate the brightness integral that includes the size distribution of the interplanetary dust, the spatial distribution, and the scattering properties. The scattering properties are estimated with Mie calculations of spherical particles consisting of astronomical silicate. We consider different size distributions of the dust particles with sizes between 1 nanometre - 100 micrometre. It was recently discussed that the extension of the dust-free zone can be inferred from the slope of the F-corona brightness seen in new observations received from the WISPR instrument on the NASA Parker Solar Probe (Stenborg et al., 2020). We, therefore, investigate the influence of the dust-free zone on the brightness and compare it to the influence that the dust size distribution has.&lt;/p&gt;&lt;p&gt;References&lt;/p&gt;&lt;p&gt;1. G. Stenborg, R. A. Howard, P. Hess, B. Gallagher, PSP/WISPR observations of dust density depletion near the Sun I. Remote observations to 8 Rsol from an observer between 0.13-0.35 AU, A&amp;A, Forthcoming article, 2020. DOI:&amp;#160;10.1051/0004-6361/202039284&lt;/p&gt;


2021 ◽  
Author(s):  
Benjamin Lynch

&lt;div&gt; &lt;div&gt; &lt;div&gt; &lt;p&gt;We present a three-dimensional (3D) numerical magnetohydrodynamics (MHD) model of the white-light coronagraph observational phenomena known as coronal inflows and in/out pairs. Coronal inflows in the LASCO/C2 field of view (approximately 2&amp;#8211;6 Rs) were thought to arise from the dynamic and intermittent release of solar wind plasma associated with the helmet streamer belt as the counterpart to outward-propagating streamer blobs, formed by magnetic reconnection. The MHD simulation results show relatively narrow lanes of density depletion form high in the corona and propagate inward with sinuous motion that has been characterized as &quot;tadpole-like&quot; in coronagraph imagery. The height&amp;#8211;time evolution and velocity profiles of the simulation inflows and in/out pairs are compared to their corresponding observations and a detailed analysis of the underlying magnetic field structure associated with the synthetic white-light and mass density evolution is presented. Understanding the physical origin of this structured component of the slow solar wind&amp;#8217;s intrinsic variability could make a significant contribution to solar wind modeling and the interpretation of remote and in situ observations from Parker Solar Probe and Solar Orbiter.&lt;/p&gt; &lt;/div&gt; &lt;/div&gt; &lt;/div&gt;


JETP Letters ◽  
2021 ◽  
Vol 113 (2) ◽  
pp. 86-91
Author(s):  
I. Yu. Zudin ◽  
M. E. Gushchin ◽  
N. A. Aidakina ◽  
S. V. Korobkov ◽  
A. V. Strikovskiy

Author(s):  
L. M. Bjoland ◽  
Y. Ogawa ◽  
U. P. Løvhaug ◽  
D. A. Lorentzen ◽  
S. M. Hatch ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document