Numerical study of the effects occurring near a circular cylinder in stratified fluid flows with short buoyancy periods

2011 ◽  
Vol 52 (6) ◽  
pp. 905-911 ◽  
Author(s):  
V. A. Gushchin ◽  
T. I. Rozhdestvenskaya
Author(s):  
Koki Yamada ◽  
Yuga Shigeyoshi ◽  
Shuangjing Chen ◽  
Yoshiki Nishi

Abstract Purpose This study elucidated the effect of an inclined spring arrangement on the flow-induced vibration of a circular cylinder to understand if the effect enhances the harnessing of the energy of fluid flows. Method An experiment was conducted on a circulating water channel. A circular cylinder was partially submerged. It was elastically supported by two springs whose longitudinal directions were varied. With the speed of the water flow varied, the vibrations of the circular cylinder were measured. The measured vibrations were interpreted by la linear dynamic model. Results and discussion In a few cases, a jump in response amplitudes from zero to the maximum was observed with the spring inclination at reduced velocities of 6 to 7, whereas gradually increasing response amplitudes were observed in other cases. The inclined spring arrangement achieved greater velocity amplitudes than in cases without spring inclination. A theoretical evaluation of the measured responses indicates that the effect of the inclined springs was caused by geometric nonlinearity; the effect would be more prominent by employing a longer moment lever.


2016 ◽  
Vol 806 ◽  
pp. 254-303
Author(s):  
R. J. Munro ◽  
M. R. Foster

A linearly stratified fluid contained in a circular cylinder with a linearly sloped base, whose axis is aligned with the rotation axis, is spun-up from a rotation rate $\unicode[STIX]{x1D6FA}-\unicode[STIX]{x0394}\unicode[STIX]{x1D6FA}$ to $\unicode[STIX]{x1D6FA}$ (with $\unicode[STIX]{x0394}\unicode[STIX]{x1D6FA}\ll \unicode[STIX]{x1D6FA}$) by Rossby waves propagating across the container. Experimental results presented here, however, show that if the Burger number $S$ is not small, then that spin-up looks quite different from that reported by Pedlosky & Greenspan (J. Fluid Mech., vol. 27, 1967, pp. 291–304) for $S=0$. That is particularly so if the Burger number is large, since the Rossby waves are then confined to a region of height $S^{-1/2}$ above the sloped base. Axial vortices, ubiquitous features even at tiny Rossby numbers of spin-up in containers with vertical corners (see van Heijst et al.Phys. Fluids A, vol. 2, 1990, pp. 150–159 and Munro & Foster Phys. Fluids, vol. 26, 2014, 026603, for example), are less prominent here, forming at locations that are not obvious a priori, but in the ‘western half’ of the container only, and confined to the bottom $S^{-1/2}$ region. Both decay rates from friction at top and bottom walls and the propagation speed of the waves are found to increase with $S$ as well. An asymptotic theory for Rossby numbers that are not too large shows good agreement with many features seen in the experiments. The full frequency spectrum and decay rates for these waves are discussed, again for large $S$, and vertical vortices are found to occur only for Rossby numbers comparable to $E^{1/2}$, where $E$ is the Ekman number. Symmetry anomalies in the observations are determined by analysis to be due to second-order corrections to the lower-wall boundary condition.


1993 ◽  
Vol 251 ◽  
pp. 355-375 ◽  
Author(s):  
Laurence Armi ◽  
Richard Williams

The steady hydraulics of a continuously stratified fluid flowing from a stagnant reservoir through a horizontal contraction was studied experimentally and theoretically. As the channel narrows, the flow accelerates through a succession of virtual controls, at each of which the flow passes from sub-critical to supercritical with respect to a particular wave mode. When the narrowest section acts as a control, the flow is asymmetric about the narrowest section, supercritical in the divergent section and self- similar throughout the channel. With increased flow rate a new enclosed self-similar solution was found with level isopycnals and velocity uniform with depth. This flow is only symmetric in the immediate neighbourhood of the narrowest section, and in the divergent section remains supercritical with respect to higher internal modes, has separation isopycnals and splits into one or more jets separated by regions of stagnant, constant-density fluid. Flows which are subcritical with respect to lowest modes can also be asymmetric about the narrowest section for higher internal modes. The experiments are interpreted using steady, inviscid hydraulic theory. Solutions require separation isopycnals and regions of stationary, constant-density fluid in the divergent section.


Author(s):  
R. Kamali ◽  
A. H. Tabatabaee Frad

It is known that the Lattice Boltzmann Method is not very effective when it is being used for the high speed compressible viscous flows; especially complex fluid flows around bodies. Different reasons have been reported for this unsuccessfulness; Lacking in required isotropy in the employed lattices and the restriction of having low Mach number in Taylor expansion of the Maxwell Boltzmann distribution as the equilibrium distribution function, might be mentioned as the most important ones. In present study, a new numerical method based on Li et al. scheme is introduced which enables the Lattice BoltzmannMethod to stably simulate the complex flows around a 2D circular cylinder. Furthermore, more stable implementation of boundary conditions in Lattice Boltzmann method is discussed.


2019 ◽  
Vol 33 (3) ◽  
pp. 236-244
Author(s):  
Ju-Han Lee ◽  
Kwan-Woo Kim ◽  
Kwang-Jun Paik ◽  
Won-Cheol Koo ◽  
Yeong-Gyu Kim

Sign in / Sign up

Export Citation Format

Share Document