On the admissible sets of type $\mathbb{H}\mathbb{Y}\mathbb{P}(\mathfrak{M})$ over recursively saturated models

2011 ◽  
Vol 52 (6) ◽  
pp. 951-968 ◽  
Author(s):  
R. R. Avdeev
1978 ◽  
Vol 43 (2) ◽  
pp. 183-206 ◽  
Author(s):  
John Stewart Schlipf

One of the most significant by-products of the study of admissible sets with urelements is the emphasis it has given to recursively saturated models. As suggested in [Schlipf, 1977], countable recursively saturated models (for finite languages) possess many of the desirable properties of saturated and special models. The notion of resplendency was introduced to isolate some of these desirable properties. In §§1 and 2 of this paper we study these parallels, showing how they can be exploited to give new proofs of some traditional model theoretic theorems. This yields both pedagogical and philosophical advantages: pedagogical since countable recursively saturated models are easier to build and manipulate than saturated and special models; philosophical since it shows that uncountable models — which the downward Lowenheim–Skolem theorem tells us are in some sense not basic in the study of countable theories — are not needed in model theoretic proofs of these theorems. In §3 we apply our local results to get results about resplendent models of ZF set theory and PA (Peano arithmetic). In §4 we shall examine certain analogous results for admissible languages, most similar to, and seemingly generally slightly weaker than, already known results. (The Chang–Makkai sort of result, however, is new.)Although this paper is an outgrowth of work with admissible sets with urelements, I have tried to keep it as accessible as possible to those with a background only in finitary model theory. Thus §§1,2, and 3 should not involve any work with admissible sets. §4, however, is concerned with some admissible analogues to results in §2 and necessarily uses certain technical results of §11 5 of [Schlipf, 1977].


1984 ◽  
Vol 282 (2) ◽  
pp. 539-539 ◽  
Author(s):  
Angus Macintyre ◽  
David Marker

1989 ◽  
Vol 54 (1) ◽  
pp. 177-189 ◽  
Author(s):  
Roman Kossak

In [KP] we have studied the problem of determining when a subset of a (countable) model M of PA can be coded in an elementary end extension of M. Sets with this property are called elementary extensional. In particular we can ask whether there are elementary extensional subsets of a model which have order type ω. It turns out that having elementary extensional subsets of order type ω is an interesting property connected with other structural properties of models of PA. We will call this property the ω-property. In [KP] the problem of characterizing models with the ω-property was left open. It is still open, and the aim of this paper is to present a collection of results pertaining to it. It should be mentioned that the same notion was studied by Kaufmann and Schmerl in [KS2] in connection with some weak notions of saturation which they discuss there. Our notion of a model with the ω-property corresponds to the notion of an upward monotonically ω-lofty cut.It is fairly easy to see that countable recursively saturated models (or in fact all recursively saturated models with cofinality ω) and all short recursively saturated models have the ω-property (Proposition 1.2 below). On the other hand, if we had asked the question about the existence of models with the ω-property before 1975 (when recursively saturated models were introduced) the answer would probably not have been that easy and we would have to come to notions close to recursive saturation.


Sign in / Sign up

Export Citation Format

Share Document