recursive saturation
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 0)

H-INDEX

5
(FIVE YEARS 0)

1989 ◽  
Vol 54 (1) ◽  
pp. 177-189 ◽  
Author(s):  
Roman Kossak

In [KP] we have studied the problem of determining when a subset of a (countable) model M of PA can be coded in an elementary end extension of M. Sets with this property are called elementary extensional. In particular we can ask whether there are elementary extensional subsets of a model which have order type ω. It turns out that having elementary extensional subsets of order type ω is an interesting property connected with other structural properties of models of PA. We will call this property the ω-property. In [KP] the problem of characterizing models with the ω-property was left open. It is still open, and the aim of this paper is to present a collection of results pertaining to it. It should be mentioned that the same notion was studied by Kaufmann and Schmerl in [KS2] in connection with some weak notions of saturation which they discuss there. Our notion of a model with the ω-property corresponds to the notion of an upward monotonically ω-lofty cut.It is fairly easy to see that countable recursively saturated models (or in fact all recursively saturated models with cofinality ω) and all short recursively saturated models have the ω-property (Proposition 1.2 below). On the other hand, if we had asked the question about the existence of models with the ω-property before 1975 (when recursively saturated models were introduced) the answer would probably not have been that easy and we would have to come to notions close to recursive saturation.


1987 ◽  
Vol 52 (3) ◽  
pp. 842-863 ◽  
Author(s):  
Stuart T. Smith

AbstractWe prove results about nonstandard formulas in models of Peano arithmetic which complement those of Kotlarski, Krajewski, and Lachlan in [KKL] and [L]. This enables us to characterize both recursive saturation and resplendency in terms of statements about nonstandard sentences. Specifically, a model of PA is recursively saturated iff is nonstandard and -logic is consistent. is resplendent iff is nonstandard, -logic is consistent, and every sentence φ which is consistent in -logic is contained in a full satisfaction class for . Thus, for models of PA, recursive saturation can be expressed by a (standard) -sentence and resplendency by a -sentence.


Jon Barwise and John Schlipf. On recursively saturated models of arithmetic. Model theory and algebra, A memorial tribute to Abraham Robinson, edited by D. H. Saracino and V. B. Weispfenning, Lecture notes in mathematics, vol. 498, Springer-Verlag, Berlin, Heidelberg, and New York, 1975, pp. 42–55. - Patrick Cegielski, Kenneth McAloon, and George Wilmers. Modèles récursivement saturés de l'addition et de la multiplication des entiers naturels. Logic Colloquium '80, Papers intended for the European summer meeting of the Association for Symbolic Logic, edited by D. van Dalen, D. Lascar, and T. J. Smiley, Studies in logic and the foundations of mathematics, vol. 108, North-Holland Publishing Company, Amsterdam, New York, and London, 1982, pp. 57–68. - Julia F. Knight. Theories whose resplendent models are homogeneous. Israel journal of mathematics, vol. 42 (1982), pp. 151–161. - Julia Knight and Mark Nadel. Expansions of models and Turing degrees. The journal of symbolic logic, vol. 47 (1982), pp. 587–604. - Julia Knight and Mark Nadel. Models of arithmetic and closed ideals. The journal of symbolic logic, vol. 47 no. 4 (for 1982, pub. 1983), pp. 833–840. - Henryk Kotlarski. On elementary cuts in models of arithmetic. Fundamenta mathematicae, vol. 115 (1983), pp. 27–31. - H. Kotlarski, S. Krajewski, and A. H. Lachlan. Construction of satisfaction classes for nonstandard models. Canadian mathematical bulletin—Bulletin canadien de mathématiques, vol. 24 (1981), pp. 283–293. - A. H. Lachlan. Full satisfaction classes and recursive saturation. Canadian mathematical bulletin—Bulletin canadien de mathématiques, pp. 295–297. - Leonard Lipshitz and Mark Nadel. The additive structure of models of arithmetic. Proceedings of the American Mathematical Society, vol. 68 (1978), pp. 331–336. - Mark Nadel. On a problem of MacDowell and Specker. The journal of symbolic logic, vol. 45 (1980), pp. 612–622. - C. Smoryński. Back-and-forth inside a recursively saturated model of arithmetic. Logic Colloquium '80, Papers intended for the European summer meeting of the Association for Symbolic Logic, edited by D. van Dalen, D. Lascar, and T. J. Smiley, Studies in logic and the foundations of mathematics, vol. 108, North-Holland Publishing Company, Amsterdam, New York, and London, 1982, pp. 273–278. - C. Smoryński and J. Stavi. Cofinal extension preserves recursive saturation. Model theory of algebra and arithmetic, Proceedings of the Conference on Applications of Logic to Algebra and Arithmetic held at Karpacz, Poland, September 1–7,1979, edited by L. Pacholski, J. Wierzejewski, and A. J. Wilkie, Lecture notes in mathematics, vol. 834, Springer-Verlag, Berlin, Heidelberg, and New York, 1980, pp. 338–345. - George Wilmers. Minimally saturated models. Model theory of algebra and arithmetic, Proceedings of the Conference on Applications of Logic to Algebra and Arithmetic held at Karpacz, Poland, September 1–7, 1979, edited by L. Pacholski, J. Wierzejewski, and A. J. Wilkie, Lecture notes in mathematics, vol. 834, Springer-Verlag, Berlin, Heidelberg, and New York, 1980, pp. 370–380.

1987 ◽  
Vol 52 (1) ◽  
pp. 279-284
Author(s):  
J.-P. Ressayre

1985 ◽  
Vol 50 (1) ◽  
pp. 72-90 ◽  
Author(s):  
George Wilmers

The present work may perhaps be seen as a point of convergence of two historically distinct sequences of results. One sequence of results started with the work of Tennenbaum [59] who showed that there could be no nonstandard recursive model of the system PA of first order Peano arithmetic. Shepherdson [65] on the other hand showed that the system of arithmetic with open induction was sufficiently weak to allow the construction of nonstandard recursive models. Between these two results there remained for many years a large gap occasioned by a general lack of interest in weak systems of arithmetic. However Dana Scott observed that the addition alone of a nonstandard model of PA could not be recursive, while more recently McAloon [82] improved these results by showing that even for the weaker system of arithmetic with only bounded induction, neither the addition nor the multiplication of a nonstandard model could be recursive.Another sequence of results starts with the work of Lessan [78], and independently Jensen and Ehrenfeucht [76], who showed that the structures which may be obtained as the reducts to addition of countable nonstandard models of PA are exactly the countable recursively saturated models of Presburger arithmetic. More recently, Cegielski, McAloon and the author [81] showed that the above result holds true if PA is replaced by the much weaker system of bounded induction.However in both the case of the Tennenbaum phenomenon and in that of the recursive saturation of addition the problem remained open as to how strong a system was really necessary to generate the required phenomenon. All that was clear a priori was that open induction was too weak to produce either result.


1983 ◽  
Vol 48 (3) ◽  
pp. 623-628 ◽  
Author(s):  
Julia F. Knight

In [6], Nadel showed that if is a recursively saturated model of Pr = Th(ω, +) of power at most ℵ1, then there is a model such that ≡ ∞ω and can be expanded to a recursively saturated model of P. For a fixed completion T of P, can be chosen to have a recursively saturated expansion to a model of T just in case is recursive in T-saturated. (“Recursive in T-saturation” is defined just like recursive saturation except that the sets of formulas considered are those that are recursive in T.)Nadel also showed in [6] that for a fixed completion T of P, a countable nonstandard model of Pr can be expanded to a model of T (not necessarily recursively saturated) iff satisfies a condition called “exp(T)-saturation.” This condition is stronger than recursive saturation but weaker than recursive in T-saturation. Nadel left open the problem of characterizing the models of Pr of power ℵ1 such that for some , ≣ ∞ω and can be expanded to a model of T. The present paper gives such a characterization. The condition on is that it is recursively saturated, and for each n ∈ ω, the set Tn of Πn-sentences of T is recursive in some type realized in .This result can be interpreted in various ways, just as the results from [6] were interpreted in various ways in [4]. Friedman [2] introduced the notion of a “standard system.”


1983 ◽  
Vol 48 (2) ◽  
pp. 311-320 ◽  
Author(s):  
Roman Kossak

This paper is devoted to the study of recursively and short recursively saturated models of PA by means of so-called nonstandard satisfaction methods. The paper is intended to be self-contained. In particular, no knowledge of nonstandard satisfaction classes is assumed. In fact we shall not use this notion explicitly.We define a certain property of models of PA which we call the S-property and prove that properly short recursively saturated models (see Definition 2.1. below) are exactly short models with the S-property. The main result is that all properly short recursively saturated models are elementary cuts of recursively saturated models. This is a generalization to the uncountable case of the theorem of C. Smorynski [9] and is an easy application of some general results concerning cofinal extensions of models of PA which we discuss in §3.On the way we obtain another proof of the result of Smorynski and Stavi [10] which says that short recursive and recursive saturation is preserved under cofinal extensions.The author wants to thank H. Kotlarski and W. Marek for valuable suggestions concerning the subject of the paper.Special thanks must also go to J. Paris for the lemma used in the proof of Theorem 3.5.


1982 ◽  
Vol 47 (4) ◽  
pp. 833-840 ◽  
Author(s):  
Julia Knight ◽  
Mark Nadel

A set J of Turing degrees is called an ideal if (1) J ≠ ∅, (2) for any pair of degrees ã, , if ã, ϵ J, then ã ⋃ ϵJ, and (3) for any ⋃ ϵ J and any , if < ⋃, then ϵ J. A set J of degrees is said to be closed if for any theory T with a set of axioms of degree in J, T has a completion of degree in J.Closed ideals of degrees arise naturally in the following way. If is a recursively saturated structure, let I() = { for some ā ϵ }. Let D() = {: is recursive in d-saturated}. (Recursive in d-saturation is defined like recursive saturation except that the sets of formulas considered are recursive in d.) These two sets of degrees were investigated in [2]. It was shown that if is a recursively saturated model of P, Pr = Th(ω, +), or Pr′ = Th(Z, +, 1), then I() = D(), and this set is a closed ideal. Any closed ideal J can be represented as I() = D() for some recursively saturated model of Pr′. For sets J of power at most ℵ1, Pr′ can be replaced by P.Assuming CH, all closed ideals have power at most ℵ1, but if CH fails, there are closed ideals of power greater than ℵ1, and it is not known whether these can be represented as I() = D() for a recursively saturated model of P.In the present paper, it will first be shown that information about representation of closed ideals provides new information about an old problem of MacDowell and Specker [6] and extends an old result of Scott [8] in a natural way. It will also be shown that the representation results from [2] answer a problem of Friedman [1]. This part of the paper is aimed at convincing the reader that representation problems are worth investigating.


1982 ◽  
Vol 47 (3) ◽  
pp. 587-604 ◽  
Author(s):  
Julia Knight ◽  
Mark Nadel

If is a countable recursively saturated structure and T is a recursively axiomatizable theory that is consistent with Th(), then it is well known that can be expanded to a recursively saturated model of T [7, p. 186]. This is what has made recursively saturated models useful in model theory. Recursive saturation is the weakest notion of saturation for which this expandability result holds. In fact, if is a countable model of Pr = Th(ω, +), then can be expanded to a model of first order Peano arithmetic P just in case is recursively saturated (see [3]).In this paper we investigate two natural sets of Turing degrees that tell a good deal about the expandability of a given structure. If is a recursively saturated structure, I() consists of the degrees of sets that are recursive in complete types realized in . The second set of degrees, D(), consists of the degrees of sets S such that is recursive in S-saturated. In general, I() ⊆ D(). Moreover, I() is obviously an “ideal” of degrees. For countable structures , D() is “closed” in the following sense: For any class C ⊆ 2ω, if C is co-r.e. in S for some set S such that , then there is some σ ∈ C such that . For uncountable structures , we do not know whether D() must be closed.


1981 ◽  
Vol 24 (3) ◽  
pp. 295-297 ◽  
Author(s):  
A. H. Lachlan

AbstractIt is shown that a nonstandard model of Peano arithmetic which has a full satisfaction class is necessarily recursively saturated.


Sign in / Sign up

Export Citation Format

Share Document