Preoperational Tests of the PIRATE Program for Identifying and Assessing the Depth of Defects in Heat Exchangers of Nuclear Power Plants’ Steam Generators

2020 ◽  
Vol 67 (8) ◽  
pp. 517-523
Author(s):  
A. G. Zhdanov ◽  
V. P. Lunin ◽  
A. A. Stolyarov ◽  
E. G. Schukis
2020 ◽  
Vol 12 (12) ◽  
pp. 5149
Author(s):  
Ga Hyun Chun ◽  
Jin-ho Park ◽  
Jae Hak Cheong

Although the generation of large components from nuclear power plants is expected to gradually increase in the future, comprehensive studies on the radiological risks of the predisposal management of large components have been rarely reported in open literature. With a view to generalizing the assessment framework for the radiological risks of the processing and transport of a representative large component—a steam generator—12 scenarios were modeled in this study based on past experiences and practices. In addition, the general pathway dose factors normalized to the unit activity concentration of radionuclides for processing and transportation were derived. Using the general pathway dose factors, as derived using the approach established in this study, a specific assessment was conducted for steam generators from a pressurized water reactor (PWR) or a pressurized heavy water reactor (PHWR) in Korea. In order to demonstrate the applicability of the developed approach, radiation doses reported from actual experiences and studies are compared to the calculated values in this study. The applicability of special arrangement transportation of steam generators assumed in this study is evaluated in accordance with international guidance. The generalized approach to assessing the radiation doses can be used to support optimizing the predisposal management of large components in terms of radiological risk.


2021 ◽  
Vol 313 ◽  
pp. 94-105
Author(s):  
A. Bernatskyi ◽  
V. Sydorets ◽  
O.M. Berdnikova ◽  
I. Krivtsun ◽  
O. Kushnarova

Extending the lifetime of energy facilities is extremely important today. This is especially true of nuclear power plants, the closure (or modernization) of which poses enormous financial and environmental problems. High-quality repair of reactors can significantly extend their service life. One of the critical parts is heat exchangers, the tubes of which quite often fail. Sealing, as a type of repair of heat exchanger tubes by the plugs, is promising provided that the joint quality is high. Practical experience in the use of welding to solve this problem has shown the need to search technological solutions associated with increasing the depth of penetration and reducing the area of thermal effect. The aim of the work was to develop a highly efficient technology for repair and extension of service life of heat exchangers of nuclear power plants based on the results of studying the technological features of laser welding of joints of dissimilar austenitic steels AISI 321 and AISI 316Ti in the vertical spatial position. Based on the results of the analysis of mechanical test data, visual and radiographic control, impermeability tests and metallographic studies of welded joints, the appropriate modes of laser welding of plugs have been determined. The principal causes of defects during laser welding of annular welded joints of dissimilar stainless steels are determined and techniques for their elimination and prevention of their formation are proposed. Based on the results of the research, technological recommendations for laser welding of plugs in the heat exchange tube of the collector are formulated, which significantly improves the technology of repair of steam generators of nuclear power plants and extends the service life of reactors.


2021 ◽  
Vol 131 ◽  
pp. 103580
Author(s):  
Luca Pinciroli ◽  
Piero Baraldi ◽  
Ahmed Shokry ◽  
Enrico Zio ◽  
Redouane Seraoui ◽  
...  

Author(s):  
Murat Bakirov ◽  
Sergei Chubarov ◽  
Nikolay Trunov

The basic method of the operational inspection of metal of heat exchanging tubes (HET) of steam generators (SG) is eddy-current multifrequency method all over the world. The greatest distribution was received variant with eddy-current testing (ECT) by use of a bobbing probe on the Russian nuclear power plants (NPP). Tubes with the defects which a subject to plugging are defined by results of lead operational ECT over the certain algorithm. SG resource is settled and replacement is required at achievement of a limit on number of the plugged tubes [1].


Atomic Energy ◽  
2008 ◽  
Vol 105 (3) ◽  
pp. 165-174 ◽  
Author(s):  
N. B. Trunov ◽  
B. I. Lukasevich ◽  
D. O. Veselov ◽  
Yu. G. Dragunov

2018 ◽  
Vol 245 ◽  
pp. 07017 ◽  
Author(s):  
Anastasia Ulasen ◽  
Aleksandr Kalyutik ◽  
Anatolii Blagoveshchenskii

The article considers the possible ways to optimize the technological solutions of the recharge and boron control system of nuclear power plants under construction within the AES-2006 project. The possibilities for optimization of technological solutions of the system of recharge and boron regulation of the AES-2006 project, which will not affect the reliability and efficiency of its main functions: purge-recharge of the primary circuit and boron regulation, were studied. As a result of the analysis of technological solutions and analytical calculations carried out during the work, it was found that in the system of recharge and boron regulation of the NPP within the project AES-2006 it is possible to perform optimization basing on reduction the metal content of the heat exchange equipment by reducing the surface area of the heat exchangers of the coolant outlet, reducing the power of pumps, as well as reducing the diameter of a number of main pipelines. Implementation of the proposed optimization of technological solutions will allow a more rational arrangement of the system and reduce capital costs for the construction of nuclear power plants as a whole, while not adversely affect the safety of the system and its functions.


Sign in / Sign up

Export Citation Format

Share Document