Changes in biocenoses of Kondopoga Bay, Lake Onego, under the effect of effluents from a pulp and paper mill

2014 ◽  
Vol 41 (1) ◽  
pp. 78-86
Author(s):  
T. M. Timakova ◽  
T. P. Kulikova ◽  
I. A. Litvinova ◽  
T. N. Polyakova ◽  
M. T. Syarki ◽  
...  
2021 ◽  
Author(s):  
Mikhail Zobkov ◽  
Natalia Belkina ◽  
Vladimir Kovalevski ◽  
Maria Zobkova ◽  
Tatiana Efremova ◽  
...  

<p>Lake Onego is the second largest lake in Europe. Sediment samples (23) were collected in different regions of the lake. Microplastics (MPs) were extracted from sediments with heavy liquid, oxidized and its abundance was determined using a microscope with a magnification of 40x. The extraction efficiency and the level of external contamination were evaluated, the results were blank-corrected. The anthropogenic origin of randomly selected MPs items was confirmed by Raman spectroscopy. MPs were detected in all samples. Maximum MPs abundances in sediments were observed in areas associated with the mouth of the second largest tributary of the lake – river Shuya and Petrozavodsk Bay (2244 ± 1901 pcs/kg DW; n= 6, p = 0.95), the open part of the lake (2356 ± 1689; n = 5, p = 0.95) and in Kizhi National Park (3413 ± 2005; n = 4, p = 0.95). In mean MPs abundance in Lake Onego was 2141±1144; n=22; p = 0.95).   Fibers dominated in most of the samples (64±14%; n=22; p = 0.95). It was established, that fibers accumulate in sediments together with medium silt fraction (0.01-0.05 mm). MPs abundance was extremely high in Kondopoga bay (217 000 pcs/kg DW) and was mainly represented by microcapsules, possibly due to impact of the wastewaters of the Pulp and Paper mill plant at this site. In mean, MPs abundance in Lake Onego sediments was at least two times higher, than was previously established in Baltic Sea with similar methodology. Further comprehensive assessment of MPs contamination rates and forecasting consequences of this contamination to ecosystem is an urgent need in current research.</p><p>The study was supported by the Russian Science Foundation grant number 19-17-00035.</p>


2008 ◽  
Vol 43 (2-3) ◽  
pp. 161-171 ◽  
Author(s):  
Pierre Martel ◽  
Tibor Kovacs ◽  
Virginie Bérubé

Abstract Pulp and paper mill effluents have been reported to cause changes in reproductive indicators of fish in laboratory and field studies. These changes include reduced egg production and gonad size, and altered hormone levels and expression of secondary sex characteristics. We examined the performance of biotreatment plants for their potential in abating effects of pulp and paper mill effluents on fish reproduction under laboratory conditions. A bleached kraft mill effluent (BKME) treated in an aerated lagoon and a thermomechanical pulp mill effluent (TMPE) treated by aerobic sludge in a sequential batch reactor were selected for study. Mature fathead minnows (Pimephales promelas) were exposed to effluents before and after biotreatment under continuous renewal conditions for 21 days. Egg production was monitored daily, while morphometric parameters (length, weight, gonad size), secondary sexual characteristics, and steroid hormone and vitellogenin levels were measured at the end of the effluent exposure. The effluent from both mills before biotreatment impaired the reproductive capacity of minnows (egg production) at concentrations of 10 and 20% vol/vol, but not at 2% vol/vol. Exposure to biotreated effluents from both mills at concentrations of 2, 10, 20, and 40% vol/vol caused no significant differences in overall reproductive capacity of minnows as compared with controls. These results indicate that biotreatment can significantly improve the quality of a BKME and an effluent from a TMP mill with respect to the reproductive capacity of fish as determined in laboratory tests.


1992 ◽  
Vol 25 (2) ◽  
pp. 57-64
Author(s):  
C. G. Jardine

As part of the Remedial Action Plan (RAP) programs for the St. Lawrence and Spanish Rivers in Ontario, Canada, tainting evaluations were conducted using members of the Public Advisory Committees (PACs) and the RAP teams. Triangle test sensory evaluations were conducted on caged rainbow trout (Salmo gairdneri) exposed insitu upstream and downstream of the pulp and paper mill diffuser outfalls In the St. Lawrence River only, evaluations were conducted on indigenous yellow perch (Perca flavescens) caught upstream and downstream of the mill discharge . In both locations, the odour of the flesh from the caged trout exposed above the diffuser outfall was not judged significantly different from caged trout exposed downstream of the discharge. However, the indigenous perch caught downstream of the mill in the St. Lawrence River were judged by the panelists to have a significantly more objectionable odour than those caught upstream of the discharge. While the effluent tainting potential appears to have been eliminated in the Spanish River, further studies are required to determine the source and magnitude of tainting concerns in the St. Lawrence River. The sensory test and results reported here provide useful tools for evaluating the tainting potential of pulp mill discharges and for assessing perceived consumer quality of the fish exposed to these effluents.


1988 ◽  
Vol 20 (2) ◽  
pp. 143-152 ◽  
Author(s):  
A. Langi ◽  
M. Priha

The mutagenic properties of pulp and paper mill effluents were studied in three mills: bleached kraft mill with aerated lagoon treatment (Mill 1), bleached kraft mill with activated sludge treatment (Mill 2) and mechanical pulp/paper mill (Mill 3). Both treated and untreated effluents, process streams and molecular fractions were tested for mutagenicity (Ames test. Salmonella typhimurium TA100 and SCE sister chromatid exchange test, Chinese hamster ovary cells). To verify the potential environmental effects the mutagenic activity of concentrated recipient lake water (Mill 2) was also studied. The Ames mutagenicity of the bleached kraft mill effluent (BKME) originated from the first chlorination filtrate, SCE mutagenicity also occurred in the alkali extraction stage filtrate (Mill 1). No Ames mutagenicity was detected in the paper mill effluent, but it was SCE mutagenic. Activated sludge treatment of BKME removed both Ames and SCE mutagenicity, but the aerated lagoon treated BKME was still SCE mutagenic. No mutagenic activity was detected in the recipient water concentrates.


Sign in / Sign up

Export Citation Format

Share Document