The Wastewater Treatment Systems in The Pulp and Paper Mill

2018 ◽  
Vol 72 (8) ◽  
pp. 907-910
Author(s):  
Toshihiko Abe
1988 ◽  
Vol 20 (1) ◽  
pp. 251-262 ◽  
Author(s):  
R. Hakulinen

Biological systems have been employed successfully for manv years in the treatment of pulp and paper mill waste water. Previously, not very much was known about enzymes and their possibilities in pulp and paper industry wastewater treatment. There is currently a lot of research activity in the enzymology of lignin degradation. Ligninase, cellulase, peroxidase, etc. are the most important enzymes, especially peroxidase, which is used for color removal in bleaching effluents. It is also possible to mix enzymes together with special microbes, which normally do not have high enzvme activity, and remove recalcitrant and harmless compounds from wastewater. The use of novel enzymes and rDNA technology in sludge and wastewater treatment will also be discussed.


2006 ◽  
Vol 52 (5) ◽  
pp. 494-500 ◽  
Author(s):  
Tim J Dumonceaux ◽  
Janet E Hill ◽  
Carl P Pelletier ◽  
Michael G Paice ◽  
Andrew G Van Kessel ◽  
...  

We examined the microbial community structure and quantified the levels of the filamentous bulking organism Thiothrix eikelboomii in samples of activated sludge mixed liquor suspended solids (MLSS) from Canadian pulp and paper mills. Libraries of chaperonin 60 (cpn60) gene sequences were prepared from MLSS total microbial community DNA and each was compared with cpnDB, a reference database of cpn60 sequences (http://cpndb.cbr.nrc.ca) for assignment of taxonomic identities. Sequences similar to but distinct from the type strain of T. eikelboomii AP3 (ATCC 49788T) (~89% identity over 555 bp) were recovered at high frequency from a mill sample that was experiencing bulking problems at the time of sample collection, which corresponded to microscopic observations using fluorescent in situ hybridization with commercially available 16S rDNA-based probes. We enumerated this strain in five mill-derived MLSS samples using real-time quantitative PCR (qPCR) and found that two samples had high levels of the bulking strain (>1012genomes/g MLSS) and two contained lower but detectable levels of this organism. None of the mill samples contained cpn60 sequences that were identical to the type strain of T. eikelboomii. This technique shows promise for monitoring pulp and paper mill wastewater treatment systems by detecting and enumerating this strain of T. eikelboomii, which may be specific to pulp and paper mill wastewater treatment systems.Key words: activated sludge, biological treatment, bulking; chaperonin 60, cpn60, filamentous bacteria, mixed liquor suspended solids, microbial communities, 021N, qPCR, settling, Thiothrix.


Sign in / Sign up

Export Citation Format

Share Document