On Asymptotics for the Solution of a Singularly Perturbed Parabolic Problem with a Multizone Internal Transition Layer

2018 ◽  
Vol 58 (6) ◽  
pp. 925-949
Author(s):  
V. F. Butuzov
2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Maicon Sônego ◽  
Arnaldo Simal do Nascimento

<p style='text-indent:20px;'>In this article we consider a singularly perturbed Allen-Cahn problem <inline-formula><tex-math id="M1">\begin{document}$ u_t = \epsilon^2(a^2u_x)_x+b^2(u-u^3) $\end{document}</tex-math></inline-formula>, for <inline-formula><tex-math id="M2">\begin{document}$ (x,t)\in (0,1)\times\mathbb{R}^+ $\end{document}</tex-math></inline-formula>, supplied with no-flux boundary condition. The novelty here lies in the fact that the nonnegative spatial inhomogeneities <inline-formula><tex-math id="M3">\begin{document}$ a(\cdot) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ b(\cdot) $\end{document}</tex-math></inline-formula> are allowed to vanish at some points in <inline-formula><tex-math id="M5">\begin{document}$ (0,1) $\end{document}</tex-math></inline-formula>. Using the variational concept of <inline-formula><tex-math id="M6">\begin{document}$ \Gamma $\end{document}</tex-math></inline-formula>-convergence we prove that, for <inline-formula><tex-math id="M7">\begin{document}$ \epsilon $\end{document}</tex-math></inline-formula> small, such degeneracy of <inline-formula><tex-math id="M8">\begin{document}$ a(\cdot) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M9">\begin{document}$ b(\cdot) $\end{document}</tex-math></inline-formula> induces the existence of stable stationary solutions which develop internal transition layer as <inline-formula><tex-math id="M10">\begin{document}$ \epsilon\to 0 $\end{document}</tex-math></inline-formula>.</p>


Sign in / Sign up

Export Citation Format

Share Document