Differential Pulse Voltammetric Determination of Anticancer Drug Regorafenib at a Carbon Paste Electrode: Electrochemical Study and Density Functional Theory Computations

2020 ◽  
Vol 75 (5) ◽  
pp. 691-700
Author(s):  
Zeynep Aydoğmuş ◽  
Serap Saglik Aslan ◽  
Gülcemal Yildiz ◽  
Ahmet Senocak
2019 ◽  
Vol 84 (2) ◽  
pp. 175-185 ◽  
Author(s):  
Mohadeseh Safaei ◽  
Hadi Beitollahi ◽  
Masoud Shishehbore ◽  
Somayeh Tajik ◽  
Rahman Hosseinzadeh

A carbon paste electrode (CPE) was modified with N-(ferrocenylmethylidene) fluorene-2-amine and graphene/ZnO nanocomposite. The electrooxidation of captopril (CAP) at the surface of the modified electrode was studied using electrochemical approaches. The electrochemical study of the modified electrode, as well as its efficiency for the electrocatalytic oxidation of captopril, is described. The electrode was used to study the electrocatalytic oxidation of captopril, by cyclic voltammetry (CV), chronoamperometry (CHA) and differential pulse voltammetry (DPV) as diagnostic techniques. It has been found that the oxidation of captopril at the surface of modified electrode occurs at a potential of about 340 mV less positive than that of an unmodified CPE. DPV of captopril at the electrochemical sensor exhibited two linear dynamic ranges (0.1?100.0 and 100.0?800.0 ?M) with a detection limit (3?) of 0.05 ?M.


2010 ◽  
Vol 75 (5) ◽  
pp. 681-687 ◽  
Author(s):  
Zsigmond Papp ◽  
Valéria Guzsvány ◽  
Szymon Kubiak ◽  
Andrzej Bobrowski ◽  
Luka Bjelica

The objective of the work was to investigate the possibility of using a tricresyl phosphate-based carbon paste electrode for the direct voltammetric determination of the neonicotinoid insecticide thiamethoxam. The analyte was determined by differential pulse voltammetry in Britton-Robinson buffer pH 7.0 in the concentration range of 3.72 - 41.5 ?g mL-1. The reproducibility of the analytical signal at the 7.29 ?g mL-1 level was characterized by a relative standard deviation of 1.3 %. The applicability of the developed method was evaluated by determining thiamethoxam in a river water sample and a commercial formulation Actara 25 WG.


2021 ◽  
Vol 4 (01) ◽  
pp. 16-25
Author(s):  
Hamideh Asadollahzadeh

Zinc oxide (ZnO) nanoparticles with an average size of 60 nm have been successfully prepared by microwave irradiation. Carbon paste electrode (CPE) was modified with ZnO nanoparticles and used for the electrochemical oxidation of chlorpheniramine maleate (CPM). Cyclic voltammetry (CV) study of the modified electrode indicated that the oxidation potential shifted towards a lower potential by approximately 106 mV and the peak current was enhanced by 2 fold in comparison to the bare CPE (ZnO/CPE-CV). The electrochemical behaviour was further described by characterization studies of scan rate, pH and concentration of CPM. Under the optimal conditions, the peak current was proportional to CPM concentration in the range of 8.0 ×10-7 to 1.0 × 10-3 mol L-1 with a detection limit of 5.0 × 10-7 mol L-1 by differential pulse voltammetry (DPV). The peak current of CPM is linear in the concentration range of 0.8 - 1000 µM (R2=0.998). The ZnO/CPE has good reproducibility and high stability for the determination of CPM using this electrode. The proposed method was successfully applied to the determination of CPM in pharmaceutical samples. In addition, the important analytical parameters were compared with other methods which show that ZnO/CPE-CV procedure is comparable to recently reported methods.


Author(s):  
Ashraf Mahmoud ◽  
Mater Mahnashi ◽  
Samer Abu-Alrub ◽  
Saad Kahatani ◽  
Mohamed El-Wekil

Abstract An innovative and reliable electrochemical sensor was proposed for simple, sensitive and selective determination of F- ions. The sensor is based on the fabrication of porous and electroactive Fe-based metal organic frameworks [MIL-101(Fe)]. It was blended with graphite powder and liquid paraffin oil to from carbon paste electrode (CPE). The MIL-101(Fe)@CPE was characterized using different techniques such as scanning electron microscope, powder X-ray diffraction spectroscopy, Fourier transform infrared spectroscopy, energy dispersive X-ray, cyclic voltammetry, electrochemical impedance spectroscopy, differential pulse voltammetry. The MIL-101(Fe)@CPE exhibited two redox peaks (anodic and cathodic) corresponding to Fe3+ and Fe2+, respectively. The determination of F- ions based on the formation of a stable fluoroferric complex with Fe3+/ Fe2+, decreasing the currents of redox species. It was found that the anodic peak current (Ipa) is linearly proportional to the concentration of F- in the range of 0.67-130 µM with a limit of detection (S/N=3) of 0.201 µM. The electrode exhibited good selectivity towards F- detection with no significant interferences from common anions. The as-fabricated sensor was applied for the determination of F- in environmental water samples with recoveries % and RSDs % in the range of 98.1-102.4 % and 2.4-3.7 %, respectively.


2021 ◽  
Author(s):  
Priscila Azevedo Liberato ◽  
Leonardo Luiz Luiz Okumura ◽  
Astréa Filomena de Souza Silva ◽  
Herbert Aleixo ◽  
Júnio Gonçalves Silva ◽  
...  

A new methodology to determine direct the fungicide Boscalid (BSC) was developed and successfully applied in red grape 100% juice, peel extracts, pulp and purple grape seed (Vitis labrusca L.)...


Sign in / Sign up

Export Citation Format

Share Document