analytical signal
Recently Published Documents


TOTAL DOCUMENTS

242
(FIVE YEARS 90)

H-INDEX

15
(FIVE YEARS 3)

Chemosensors ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 36
Author(s):  
Agnieszka Królicka ◽  
Jerzy Zarębski ◽  
Andrzej Bobrowski

In the review, voltammetric analytical procedures that employ vanadium(IV) and aminopolycarboxylic complexes of V(IV) are presented and discussed. The focus of the paper is on the mechanism of vanadium-catalyzed reactions responsible for the amplification of the analytical signal of Ge(IV). The analytical efficacy of different catalytic systems is compared, and the optimal parameters of the respective procedures are reported.


2022 ◽  
Vol 23 (2) ◽  
pp. 666
Author(s):  
Maryia Drobysh ◽  
Almira Ramanaviciene ◽  
Roman Viter ◽  
Chien-Fu Chen ◽  
Urte Samukaite-Bubniene ◽  
...  

Monitoring and tracking infection is required in order to reduce the spread of the coronavirus disease 2019 (COVID-19), induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To achieve this goal, the development and deployment of quick, accurate, and sensitive diagnostic methods are necessary. The determination of the SARS-CoV-2 virus is performed by biosensing devices, which vary according to detection methods and the biomarkers which are inducing/providing an analytical signal. RNA hybridisation, antigen-antibody affinity interaction, and a variety of other biological reactions are commonly used to generate analytical signals that can be precisely detected using electrochemical, electrochemiluminescence, optical, and other methodologies and transducers. Electrochemical biosensors, in particular, correspond to the current trend of bioanalytical process acceleration and simplification. Immunosensors are based on the determination of antigen-antibody interaction, which on some occasions can be determined in a label-free mode with sufficient sensitivity.


2022 ◽  
Author(s):  
Abraham Mulualem

Abstract A geophysical survey involving magnetic method is conducted using ENVI-MAG proton precision magnetometer. The study is carried out with the aim of identifying the possible geological structures which may responsible for the failure of engineering structures. Three traverses having east –west orientation with a ten meters profile spacing and a readings station spacing and one traverse across the three traverses and randomly collected magnetic data were used. At each station three readings were taken and averaged out in order to increase the accuracy of data and diurnal and geomagnetic corrections were made. With the corrected data different anomalous maps were produced like total magnetic field anomaly map, residual magnetic anomaly map and analytical signal map using Oasis montaji6.4 software for further interpretation. The result of this research has shown that the area is affected by different geological structures which may be the cause for the crack and the failure of the building in the area.


2021 ◽  
Vol 942 (1) ◽  
pp. 012029
Author(s):  
O Marashly ◽  
M Dobroka

Abstract In this paper, we introduced an efficient inversion method for Hilbert transform calculation which can be able to eliminate the outlier noise. The Most Frequent Value method (MFV) developed by Steiner merged with an inversion-based Fourier transform to introduce a powerful Fourier transform. The Fourier transform process (IRLS-FT) ability to noise overthrow efficiency and refusal to outliers make it an applicable method in the field of seismic data processing. In the first part of the study, we introduced the Hilbert transform stand on a efficient inversion, after that as an example we obtain the absolute value of the analytical signal which can be used as an attribute gauge. The method depends on a dual inversion, first we obtain the Fourier spectrum of the time signal via inversion, after that, the spectrum calculated via transformation of Hilbert transforms into time range using a efficient inversion. Steiner Weights is used later and calculated using the Iterative Reweighting Least Squares (IRLS) method (efficient inverse Fourier transform). Hermite functions in a series expansion are used to discretize the spectrum of the signal in time. These expansion coefficients are the unknowns in this case. The test procedure was made on a Ricker wavelet signal loaded with Cauchy distribution noise to test the new Hilbert transform. The method shows very good resistance to outlier noises better than the conventional (DFT) method.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6490
Author(s):  
Katarzyna Tyszczuk-Rotko ◽  
Rafał Olchowski ◽  
Jędrzej Kozak ◽  
Olga Sekerzh-Zenkovich ◽  
Ryszard Dobrowolski

In this paper, a dicyandiamide-impregnated mesoporous carbon (N-CMK-3), electrochemically modified in situ with lead film (Pb-N-CMK-3), was tested as an electrode material for U(VI) ultratrace determination. The prepared carbon material was characterized by XRD, SEM-EDX, Raman, FT-IR, XPS analysis and nitrogen sorption measurements. The changes of electrochemical properties of glassy carbon electrodes (GCE) after the N-CMK-3 and Pb-N-CMK-3 modification were studied using CV and EIS methods. The modification of the GCE surface by the N-CMK-3 material and Pb film increases the electroactive area of the electrode and decreases the charge transfer residence and is likely responsible for the electrochemical improvement of the U(VI) analytical signal. Using square-wave adsorptive stripping voltammetry (SWAdSV), two linear calibration ranges extending from 0.05 to 1.0 nM and from 1.0 to 10.0 nM were observed, coupled with the detection and quantification limits of 0.014 and 0.047 nM, respectively. The Pb-N-CMK-3/GCE was successfully applied for U(VI) determination in reference materials (estuarine water SLEW-3 and trace elements in natural water SRM 1640a).


Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1488
Author(s):  
Juraj Piešťanský ◽  
Ivana Čižmárová ◽  
Ondrej Štefánik ◽  
Michaela Matušková ◽  
Andrea Horniaková ◽  
...  

A capillary electrophoresis–tandem mass spectrometry method with a multisegment injection and an in-capillary field-enhanced sample stacking for determination of therapeutic peptide triptorelin in pharmaceutical and biological matrices was developed. The CE separation conditions were optimized in order to obtain maximal separation efficiency, analytical signal intensity and stability, and minimal adsorption of the analyzed peptide onto the capillary wall (1 M formic acid – HFo, pH 1.88). The implementation of the field-enhanced sample injection into CE improved the value of limit of detection 50 times while the multisegment injection increased the sample throughput three times in comparison to a conventional CE approach. The proposed method was characterized by favorable performance parameters, such as linearity (r2 ≥ 0.99), limit of detection (5 ng mL−1 in water matrix, 25 ng mL−1 in plasma matrix), precision (relative standard deviation, 1.5–9.4% for intraday and 2.3–11.9% for interday reproducibility), or accuracy (relative errors in the range of 80–109%). The FDA-validated method was successfully applied to the analysis of triptorelin in the commercial drug Diphereline® 0.1 mg (powder for injection) and in spiked human plasma samples. Favorable performance parameters along with proven application potentialities indicate the usefulness of the proposed method for its routine use in drug quality control laboratories and for clinical analysis, such as determination of triptorelin levels in plasma (for pharmacokinetic study).


Chemosensors ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 290
Author(s):  
Nadezhda S. Komova ◽  
Kseniya V. Serebrennikova ◽  
Anna N. Berlina ◽  
Svetlana M. Pridvorova ◽  
Anatoly V. Zherdev ◽  
...  

The development of reliable and highly sensitive methods for heavy metal detection is a critical task for protecting the environment and human health. In this study, a qualitative colorimetric sensor that used mercaptosuccinic-acid-functionalized gold nanoparticles (MSA-AuNPs) to detect trace amounts of Fe(III) ions was developed. MSA-AuNPs were prepared using a one-step reaction, where mercaptosuccinic acid (MSA) was used for both stabilization, which was provided by the presence of two carboxyl groups, and functionalization of the gold nanoparticle (AuNP) surface. The chelating properties of MSA in the presence of Fe(III) ions and the concentration-dependent aggregation of AuNPs showed the effectiveness of MSA-AuNPs as a sensing probe with the use of an absorbance ratio of A530/A650 as an analytical signal in the developed qualitative assay. Furthermore, the obvious Fe(III)-dependent change in the color of the MSA-AuNP solution from red to gray-blue made it possible to visually assess the metal content in a concentration above the detection limit with an assay time of less than 1 min. The detection limit that was achieved (23 ng/mL) using the proposed colorimetric sensor is more than 10 times lower than the maximum allowable concentration for drinking water defined by the World Health Organization (WHO). The MSA-AuNPs were successfully applied for Fe(III) determination in tap, spring, and drinking water, with a recovery range from 89.6 to 126%. Thus, the practicality of the MSA-AuNP-based sensor and its potential for detecting Fe(III) in real water samples were confirmed by the rapidity of testing and its high sensitivity and selectivity in the presence of competing metal ions.


Author(s):  
Костянтин Станіславович Васюта ◽  
Уляна Романівна Збежховська ◽  
Валерій Валерійович Слободянюк ◽  
Ірина Вікторівна Захарченко ◽  
Олександр Леонтійович Кащишин ◽  
...  

The subject of the research is the processes of formation and processing of signals with orthogonal frequency divisionand multiplexing (OFDM) of chaotic sequences to ensure the stealthiness of data transmission. The research synthesizes the method for increasing the stealthiness of information transmission systems based on signals with OFDM-modulation on the basis of forming an analytical signal and chaotic mapping of Chebyshev polynomial. It would enable ensuring reliable information protection in radio transmission systems that use signals with OFDM-modulation, at the cost of the high level of structural and independent and Identically distributed (IID) (the degree of signal masking under noise) stealthiness of the signals. The tasks are to investigate the effectiveness of the developed method for increasing the stealthiness of information transmission systems by numerical assessment of the level of structural and IID-stealthiness and the quality of recovery of the masked information on the receiving side. The methods used are for the formation and processing of chaotic subcarriers in the signal with OFDM-modulation – methods of nonlinear dynamics, approaches to the formation of analytical chaotic signal and methods of the statistical theory of observation processing; to assess the level of structural and IID-stealthiness – steganography theory, a method of nonlinear time series analysis based on the use of BDS-statistics. The following results are obtained: the method for increasing the stealthiness of information transmission systems based on the use of signals with OFDM-modulation and chaotic subcarriers has been synthesized, has also evaluated the level of structural and IID-stealthiness of signals, that generated using the proposed method. It is established that compared with systems that use harmonic signals with OFDM-modulation, chaotic signals with OFDM-modulation can provide a higher level of IID-stealthiness. It was confirmed by the obtained results of visual, frequency, statistical and dynamic analysis. To assess the level of structural stealthiness, the expenditure of detecting the generated signals with a given probability has been estimated. The obtained results showed that the level of structural stealthiness increased by 2…2.5 times. It has shown that to ensure the required level of recovery of the generated signal, the signal-to-noise ratio at the input of the receiver must be greater than 4 dB. Conclusions. The scientific novelty of the obtained results lies in the following: for the first time, the method of subcarrier formation for signals with OFDM-modulation based on the use of analytical signal and Chebyshev polynomial of the first kind of tertiary is obtained. The proposed method provides the required level of structural and IID-stealthiness of information transmission systems, compared with conventional methods of signal generation with OFDM-modulation, due to the similarity of the generated signals with “white” noise. 


2021 ◽  
Vol 80 (17) ◽  
Author(s):  
Khalid S. Essa ◽  
Eid R. Abo-Ezz ◽  
Yves Géraud

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4231
Author(s):  
Jędrzej Kozak ◽  
Katarzyna Tyszczuk-Rotko ◽  
Magdalena Wójciak ◽  
Ireneusz Sowa ◽  
Marek Rotko

In this paper, a screen-printed boron-doped electrode (aSPBDDE) was subjected to electrochemical activation by cyclic voltammetry (CV) in 0.1 M NaOH and the response to rifampicin (RIF) oxidation was used as a testing probe. Changes in surface morphology and electrochemical behaviour of RIF before and after the electrochemical activation of SPBDDE were studied by scanning electron microscopy (SEM), CV and electrochemical impedance spectroscopy (EIS). The increase in number and size of pores in the modifier layer and reduction of charge transfer residence were likely responsible for electrochemical improvement of the analytical signal from RIF at the SPBDDE. Quantitative analysis of RIF by using differential pulse adsorptive stripping voltammetry in 0.1 mol L−1 solution of PBS of pH 3.0 ± 0.1 at the aSPBDDE was carried out. Using optimized conditions (Eacc of −0.45 V, tacc of 120 s, ΔEA of 150 mV, ν of 100 mV s−1 and tm of 5 ms), the RIF peak current increased linearly with the concentration in the four ranges: 0.002–0.02, 0.02–0.2, 0.2–2.0, and 2.0–20.0 nM. The limits of detection and quantification were calculated at 0.22 and 0.73 pM. The aSPBDDE showed satisfactory repeatability, reproducibility, and selectivity towards potential interferences. The applicability of the aSPBDDE for control analysis of RIF was demonstrated using river water samples and certified reference material of bovine urine.


Sign in / Sign up

Export Citation Format

Share Document