The crystal structure of an iron-rich variety of zanazziite belonging to heteropolyhedral framework roscherite-group beryllophosphates

2009 ◽  
Vol 54 (4) ◽  
pp. 568-571 ◽  
Author(s):  
R. K. Rastsvetaeva ◽  
K. A. Rozenberg ◽  
N. V. Chukanov ◽  
S. Möckel
2010 ◽  
Vol 74 (3) ◽  
pp. 567-575 ◽  
Author(s):  
F. C. Hawthorne ◽  
W. B. Simmons

AbstractThe crystal structure of zigrasite, ideally MgZr(PO4)2(H2O)4, a 5.3049(2), b 9.3372(4), c 9.6282(5) Å, α 97.348(1)°, β 91.534(1)°, γ 90.512(4)°, V 472.79(5) Å3, Z = 2, triclinic, P1, Dcalc. 2.66 g.cm–3, from the giant 1972 pocket at Newry, Oxford County, Maine, USA, has been solved and refined to R1 3.75% on the basis of 2623 unique reflections (Fo > 4σF). There are two P sites, each of which is solely occupied by P with <P–O> distances of 1.532 and 1.533 Å, respectively. There are two Mg sites, both of which are occupied by Mg and are octahedrally coordinated two O anions and four (H2O) groups with <Mg–O> distances of 2.064 and 2.075 Å, respectively. There is one Zr site, occupied by Zr and octahedrally coordinated by six O anions with a <Zr–O> distance of 2.065 Å . The (ZrO6) octahedron shares corners with six (PO4) tetrahedra, forminga [Zr(PO4)2] sheet parallel to (001). These sheets are stacked in the c direction and linked by (MgO2(H2O)4) octahedra that share O atoms with the (PO4) groups. The structure is formally a heteropolyhedral framework structure, but the linkage is weaker in the c direction, accounting for the marked (001) cleavage.


2021 ◽  
Vol 66 (1) ◽  
pp. 60-65
Author(s):  
N. V. Zubkova ◽  
I. V. Pekov ◽  
A. A. Agakhanov ◽  
D. A. Ksenofontov ◽  
D. Yu. Pushcharovsky

2019 ◽  
Vol 83 (5) ◽  
pp. 633-638 ◽  
Author(s):  
Igor V. Pekov ◽  
Inna S. Lykova ◽  
Vasiliy O. Yapaskurt ◽  
Dmitry I. Belakovskiy ◽  
Anna G. Turchkova ◽  
...  

AbstractThe new mineral anatolyite Na6(Ca,Na)(Mg,Fe3+)3Al(AsO4)6 was found in the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. It is associated with potassic feldspar, hematite, tenorite, cassiterite, johillerite, tilasite, ericlaxmanite, lammerite, arsmirandite, sylvite, halite, aphthitalite, langbeinite, anhydrite, wulffite, krasheninnikovite, fluoborite, pseudobrookite and fluorophlogopite. Anatolyite occurs as aggregates (up to 2 mm across) of rhombohedral–prismatic, equant or slightly elongated along [001] crystals up to 0.2 mm. The mineral is transparent, pale brownish–pinkish, with vitreous lustre. It is brittle, cleavage was not observed and the fracture is uneven. The Mohs’ hardness is ca 4½. Dcalc is 3.872 g cm–3. Anatolyite is optically uniaxial (–), ω = 1.703(4) and ε = 1.675(3). Chemical composition (wt.%, electron microprobe) is: Na2O 16.55, K2O 0.43, CaO 2.49, MgO 5.80, MnO 0.16, CuO 0.69, ZnO 0.55, Al2O3 5.01, Fe2O3 7.94, TiO2 0.18, SnO2 0.17, SiO2 0.04, P2O5 0.55, As2O5 60.75, SO3 0.03, total 101.34. The empirical formula based on 24 O apfu is (Na5.90K0.10)Σ6.00(Ca0.50Na0.13Zn0.08Mn0.03)Σ0.74(Mg1.63Fe3+1.12Al0.15Cu0.10)Σ3.00(Al0.96Ti0.03Sn0.01)Σ1.00(As5.97P0.09Si0.01)Σ6.07O24. Anatolyite is trigonal, R$\bar{3}$c, a = 13.6574(10), c = 18.2349(17) Å, V = 2945.6(4) Å3 and Z = 6. The strongest reflections of the powder XRD pattern [d,Å(I)(hkl)] are: 7.21(33)(012), 4.539(16)(113), 4.347(27)(211), 3.421(20)(220), 3.196(31)(214), 2.981(17)(223), 2.827(100)(125) and 2.589(18)(410). The crystal structure was solved from single-crystal XRD data to R = 4.77%. The structure is based on a 3D heteropolyhedral framework formed by M4O18 clusters [M1 = Al and M2 = (Mg,Fe3+)] linked with AsO4 tetrahedra. (Ca,Na) and Na cations centre A1O6 and A2O8 polyhedra in voids of the framework. Anatolyite is isostructural with yurmarinite. The new mineral is named in honour of the outstanding Russian crystallographer, mineralogist and mathematician Anatoly Kapitonovich Boldyrev (1883–1946).


2013 ◽  
Vol 448 (1) ◽  
pp. 112-116 ◽  
Author(s):  
I. V. Pekov ◽  
N. V. Zubkova ◽  
D. Yu. Chernyshov ◽  
M. E. Zelenski ◽  
V. O. Yapaskurt ◽  
...  

Author(s):  
Sergey M. Aksenov ◽  
Ramiza K. Rastsvetaeva ◽  
Nikita V. Chukanov ◽  
Uwe Kolitsch

Calcinaksite, KNa[Ca(H2O)][Si4Ol0], a new natural member of the litidionite group, was found in a calcic xenolith from alkaline basalt of the Bellerberg volcano, Eastern Eifel region, Rhineland–Palatinate, Germany. The crystal structure has been studied based on single-crystal X-ray diffraction data. Triclinic unit-cell parameters are:a= 7.021 (2),b= 8.250 (3),c= 10.145 (2) Å, α = 102.23 (2), β = 100.34 (2), γ = 115.09 (3)°, space group P \bar 1. The structure model was determined by the `charge-flipping' method and refined toR= 0.0527 in anisotropic approximation using 3057I> 3σ(I). Calcinaksite is a hydrous calcium-dominant litidionite-group mineral. The crystal structure of calcinaksite (like other litidionite-group minerals and related compounds) is based on a heteropolyhedral framework and is characterized by the presence of several types of channels. Calcium forms distorted CaO5Ø (Ø = H2O) octahedra while Na forms NaO5square pyramids. Nine-coordinated K atoms are located in a channel extending along [010]. Water molecules occupy a channel running along the [100] direction and are characterized by a rather high equivalent isotropic displacement parameter of 0.053 (2) Å2. In calcinaksite, there are three short distances between the water molecule and oxygen atoms, Ow...O3 [2.844 (5) Å], Ow...O9 [2.736 (4) Å] and Ow...Ow[2.843 (7) Å]. These distances correspond to three hydrogen bonds detected by IR data (the bands at 3340, 3170 and 3540 cm−1).


2001 ◽  
Vol 65 (2) ◽  
pp. 297-304 ◽  
Author(s):  
Yaping Li ◽  
S. V. Krivovichev ◽  
P. C. Burns

AbstractCrystals of the compound Na4(UO2)(CO3)3 have been synthesized and the structure has been solved. It is trigonal with a= 9.3417(6), c = 12.824(1) Å, V = 969.2(1) Å3, space group P3̄c1 and Z = 4. The structure was refined on the basis of F2 (wR2 = 4.2%) for all unique data collected using Mo-Kα X-radiation and a CCD-based detector. The final R1 was 2.0%, calculated for 534 unique observed (Fo ≥ 4σF) reflections, and the goodness-of-fit (S) was 0.91. The structure contains a uranyl tricarbonate cluster composed of a uranyl hexagonal bipyramid that shares three equatorial edges with CO3 triangles. The uranyl tricarbonate clusters are connected through NaO6 and NaO5 polyhedra, forming a heteropolyhedral framework structure. This compound may be related to a uranyl carbonate phase with the same composition which has been reported as an alteration phase on the surface of Chernobyl ‘lava’, and as a mineral in the Jachymov ore district, Czech Republic.


2019 ◽  
Vol 279 ◽  
pp. 128-132 ◽  
Author(s):  
Sergey M. Aksenov ◽  
Nikita V. Chukanov ◽  
Igor V. Pekov ◽  
Ramiza K. Rastsvetaeva ◽  
Amy E. Hixon

2014 ◽  
Vol 78 (5) ◽  
pp. 1249-1264 ◽  
Author(s):  
J. Plášil ◽  
M. Dušek ◽  
J. Čejka ◽  
J. Sejkora

AbstractThe crystal structure of rabejacite from Jáchymov, ideally Ca2[(UO2)4O4(SO4)2](H2O)8, was solved by charge flipping from single-crystal data and refined to R1 = 11.94% for 1422 unique observed reflections [I > 3σ(I)]. According to single-crystal X-ray data, rabejacite is triclinic, space group P1̄ , with a = 8.7434(11), b = 8.309(3), c = 8.8693(10) Å , a = 77.86(2), b = 104.635(11), g = 82.935(18)°, V = 598.8(3) A˚ 3 and Z = 1, with Dcalc = 4.325 g cm–3. The structure refinement proved that rabejacite is related to the zippeite group of minerals, as it is based upon the structural sheets of the zippeite topology of composition [(UO2)4O4(SO4)2]4–. Located in the interlayer between the sheets, which are stacked perpendicular to [010], are Ca2+ cations and H2O groups. Ca2+ ions are [7]-coordinated, by three uranyl O atoms from adjacent sheets and four H2O groups. An additional H2O group, which is not bonded directly to any cation, is located in the interlayer. Along with rabejacite, its Cu-rich variety was found in the specimens examined and characterized structurally. Its crystal structure (R1 = 10.15% for 1049 reflections with I > 3s(I)) is practically the same as that of rabejacite, but there is an additional Cu2+ site located in between pairs of Ca polyhedra. The structural formula is (Ca1.56Cu0.40)Σ1.90[(UO2)4O4(SO4)2](H2O)8, Z = 1. Its existence suggests a greater diversity in zippeite crystal chemistry than was thought previously and also the possibility of a new Cu2+-dominant zippeite mineral besides pseudojohannite.


2009 ◽  
Vol 73 (5) ◽  
pp. 723-735 ◽  
Author(s):  
P. Elliott ◽  
P. Turner ◽  
P. Jensen ◽  
U. Kolitsch ◽  
A. Pring

AbstractNyholmite, Cd3Zn2(AsO3OH)2(AsO4)2·4H2O, from the Block 14 Opencut, Broken Hill, New South Wales, Australia, is a new Cd-Zn arsenate species, isostructural with the minerals of the hureaulite group. The mineral occurs in a quartz-garnet-arsenopyrite matrix as white globules, tufted aggregates of fibrous crystals and radiating hemispheres of thin, colourless, bladed crystals. Associated minerals are goldquarryite, lavendulan-sampleite, scorodite-strengite and gypsum. Individual crystals are up to 0.2 mm in length and 0.05 mm across. The mineral is transparent to translucent with a vitreous lustre. It is brittle with an uneven fracture and a white streak. The Mohs hardness is 3–3.5 and the calculated density is 4.23 g cm–3 for the empirical formula. Electron microprobe analyses yielded CdO 34.58, ZnO 9.72, MnO 3.59, CuO 3.39, Al2O3 0.20, CaO 0.16, PbO 0.37, As2O5 34.55, P2O5 6.29 totalling 92.85 wt.%. The empirical formula, based on 20 oxygen atoms, is Ca0.03Pb0.02 Cd2.80Al0.04Zn1.24-Cu0.44Mn0.53[(AsO4)3.13(PO4)0.92]Σ4.05H1.91·3.79H2O. Nyholmite is monoclinic, C2/c, a = 18.062(4) Å, b = 9.341(2) Å, c = 9.844(2) Å, β = 96.17(3)°, V = 1651.2(6) Å3 (single-crystal data, at 123 K). The six strongest lines in the X-ray powder diffraction pattern are [d(Å),I,(hkl)]: 8.985,30,(200); 8.283,85,(110); 6.169,25,(111); 4.878,25,(002); 3.234,100,(2, 420); 3.079,65,(222, 511); 2.976’45’(113). The crystal structure was solved by Patterson methods and refined using 2045 observed reflections to R1(F) = 3.73%. The structure is characterized by a kinked, five-membered chain of edge-sharing Mφ6 (φ = unspecified anion) octahedra, or pentamer, that extends in the a direction. The pentamers link by sharing corners to form a sheet in the (001) plane. Pentamers are also linked, via corner-sharing, by (As,P)O4 groups forming thick slabs in the (001) plane. The slabs link in the c direction by cornersharing between octahedra and tetrahedra to form a dense heteropolyhedral framework. Moderate to weak hydrogen-bonding provides additional linkage between the slabs.


Sign in / Sign up

Export Citation Format

Share Document