tolbachik volcano
Recently Published Documents


TOTAL DOCUMENTS

120
(FIVE YEARS 39)

H-INDEX

14
(FIVE YEARS 3)

2022 ◽  
pp. 1-22
Author(s):  
Igor V. Pekov ◽  
Natalia N. Koshlyakova ◽  
Dmitry I. Belakovskiy ◽  
Marina F. Vigasina ◽  
Natalia V. Zubkova ◽  
...  

Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 37
Author(s):  
Michael Zelenski ◽  
Vadim S. Kamenetsky ◽  
Nikolai Nekrylov ◽  
Alkiviadis Kontonikas-Charos

Sulfur contents in 98.5% of melt inclusions (MI) from calc-alkaline subduction basalts do not exceed 4000 ppm, whereas experimentally established limits of sulfur solubility in basaltic melts with high fO2 (characteristic of subduction zones, e.g., QFM + 2) surpass 14,000 ppm. Here we show that primitive (Mg# 62-64) subduction melts may contain high sulfur, approaching the experimental limit of sulfur solubility. Up to 11,700 ppm S was measured in olivine-hosted MI from primitive arc basalt from the 1941 eruption of the Tolbachik volcano, Kamchatka. These MI often contain magmatic sulfide globules (occasionally enriched in Cu, Ni, and platinum-group elements) and anhydrite enclosed within a brown, oxidized glass. We conclude that the ubiquitous low sulfur contents in MI may originate either from insufficient availability of sulfur in the magma generation zone or early magma degassing prior to inclusion entrapment. Our findings extend the measured range of sulfur concentrations in primitive calc-alkaline basaltic melts and demonstrate that no fundamental limit of 4000 ppm S exists for relatively oxidized subduction basalts, where the maximum sulfur content may approach the solubility limit determined by crystallization of magmatic anhydrite.


2021 ◽  
Vol 9 ◽  
Author(s):  
Anton Kutyrev ◽  
Michael Zelenski ◽  
Nikolai Nekrylov ◽  
Dmitry Savelyev ◽  
Alkiviadis Kontonikas-Charos ◽  
...  

Platinum-group elements (PGE) and gold are a promising tool to assess the processes of mantle melting beneath the subduction zones. However, fractionation processes in magmas inevitably overwrite the initial metal budgets of magmas, making constraints on the melting processes inconclusive. Moreover, little is still known about the geochemical behavior of a particular metal in a single arc magmatic system, from mantle melting towards magma solidification. Here we compare noble metals in lavas from several eruptions of the Tolbachik volcano (Kamchatka arc) to better understand the effects of magma differentiation, estimate primary melt compositions and make constraints on the mantle melting. We show that Ir, Ru, Rh and, to a lesser extent, Pt are compatible during magmatic differentiation. The pronounced incompatible behavior of Cu and Pd, observed in Tolbachik magmas, rules out the significant influence of sulfide melts on the early magmatic evolution in this particular case. Gold is also incompatible during magmatic differentiation; however, its systematics can be affected by the inferred gold recycling in the plumbing system of Tolbachik. Although the Tolbachik lavas show only slightly higher PGE fractionation than in MORB, a notable negative Ru anomaly (higher Pt/Ru and Ir/Ru) is observed. We attribute this to be a result of greater oxidation in the subarc mantle (by 1–4 log units), which promotes crystallization of Ru-bearing phases such as Fe3+-rich Cr-spinel and laurite. The estimated Pd contents for the parental melt of the Tolbachik lavas approaches 6.5 ppb. This is several times higher than reported MORB values (1.5 ± 0.5 ppb), suggesting the enrichment of Pd in the mantle wedge. Our results highlight the influence of the subduction-related processes and mantle wedge refertilization on the noble metal budgets of arc magmas.


2021 ◽  
Vol 59 (4) ◽  
pp. 713-727
Author(s):  
Nadezhda V. Shchipalkina ◽  
Igor V. Pekov ◽  
Sergey N. Britvin ◽  
Natalia N. Koshlyakova ◽  
Evgeny G. Sidorov

ABSTRACT Six different exsolution types are found in crystals of aphthitalite-group alkali sulfates from exhalations of the active Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. The coexisting minerals in these exsolutions are metathénardite, ideally Na2SO4 (P63/mmc), and vanthoffite, Na6Mg(SO4)4 (P21/c) (Type I); metathénardite and belomarinaite, KNaSO4 (P3m1) (Type II); thénardite, Na2SO4 (Fddd), and aphthitalite, K3Na(SO4)2 (Pm1) (Type III); aphthitalite and arcanite, K2SO4 (Pnma) (Type IV); metathénardite and natroaphthitalite, KNa3(SO4)2 (Pm1) (Type V); and two chemical varieties of metathénardite (Type VI). The exsolution processes occur in crystals belonging to the high-temperature, hexagonal Na2SO4(I) (= metathénardite, P63/mmc) structure type with different K:Na ratios formed at temperatures higher than 500 °C. The similarity and hexagonal close-packed nature of the crystal structures of the coexisting phases, all representatives of aphthitalite-like structure types, cause the coherent conjugation of domains during diffusion and cation ordering in the parent phase. The breakdown of solid solution can be facilitated by the mosaic character of crystals of a parent phase (incoherent grain boundaries) and the presence of coherent twin boundaries. The heating of samples with exsolution Types II and V up to 700 °C over 24 h shows that diffusion of K and Na through the domain borders does not result in the complete disorder of these cations and the extinction of domains with different crystal structures.


2021 ◽  
pp. 1-28
Author(s):  
Igor V. Pekov ◽  
Natalia V. Zubkova ◽  
Atali A. Agakhanov ◽  
Vasiliy O. Yapaskurt ◽  
Dmitry I. Belakovskiy ◽  
...  
Keyword(s):  

2021 ◽  
Vol 76 (3) ◽  
pp. 325-335
Author(s):  
F. D. Sandalov ◽  
N. V. Shchipalkina ◽  
I. V. Pekov ◽  
N. N. Koshlyakova ◽  
S. N. Britvin ◽  
...  
Keyword(s):  

2021 ◽  
pp. 1-9
Author(s):  
Igor V. Pekov ◽  
Natalia N. Koshlyakova ◽  
Atali A. Agakhanov ◽  
Natalia V. Zubkova ◽  
Dmitry I. Belakovskiy ◽  
...  

Abstract The new alluaudite-group mineral calciojohillerite is one of the major arsenates in sublimates of the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. In middle zones of the fumarole, calciojohillerite is associated with hematite, tenorite, johillerite, nickenichite, bradaczekite, badalovite, tilasite, lammerite, ericlaxmanite, aphthitalite-group sulfates, langbeinite, calciolangbeinite, anhydrite, sanidine, fluorophlogopite, fluoborite, cassiterite, pseudobrookite, rutile, sylvite and halite. In deep zones it occurs in association with anhydrite, diopside, hematite, svabite, berzeliite, schäferite, forsterite, magnesioferrite, ludwigite, rhabdoborite-group fluoroborates, powellite, baryte, fluorapatite, udinaite, arsenudinaite and paraberzeliite. Calciojohillerite forms prismatic crystals up to 1 cm long, their aggregates and crystal crusts up to 0.5 m2. It is transparent, colourless, pale green, pale yellow, light blue, pale lilac or pink, with vitreous lustre. The mineral is brittle, with imperfect cleavage. The Mohs hardness is 3½. Dcalc is 3.915 g cm–3. Calciojohillerite is optically biaxial (–), α = 1.719(3), β = γ = 1.732(3); 2Vmeas. = 15(10)°. Chemical composition (wt.%, electron-microprobe; holotype) is: Na2O 7.32, K2O 0.10, CaO 6.82, MgO 20.31, MnO 0.68, CuO 0.27, ZnO 0.02, Al2O3 0.56, Fe2O3 3.53, TiO2 0.01, SiO2 0.03, P2O5 1.25, V2O5 0.10, As2O5 58.77, SO3 0.13, total 99.90. The empirical formula based on 12 O atoms is (Na1.30K0.01Ca0.67Mg2.78Mn0.05Cu0.02Al0.06Fe3+0.24)Σ5.13(As2.83P0.10S0.01V0.01)Σ2.95O12. Calciojohillerite is monoclinic, C2/c, a = 11.8405(3), b = 12.7836(2), c = 6.69165(16) Å, β = 112.425(3)°, V = 936.29(4) Å3 and Z = 4. The crystal structure was solved from single-crystal X-ray diffraction data, R1 = 0.0227. Calciojohillerite is isostructural with other alluaudite-group minerals. Its simplified crystal chemical formula is A (1)Ca A (1)′□ A (2)□ A (2)′Na M (1)Mg M (2)Mg2(AsO4)3 (□ = vacancy). The idealised formula is NaCaMg3(AsO4)3, or, according to the nomenclature of alluaudite-group arsenates, NaCaMgMg2(AsO4)3. Calciojohillerite is named as an analogue of johillerite NaCu2+MgMg2(AsO4)3 with species-defining Ca instead of Cu in the ideal formula.


2020 ◽  
Vol 58 (5) ◽  
pp. 625-636
Author(s):  
Igor V. Pekov ◽  
Natalia V. Zubkova ◽  
Atali A. Agakhanov ◽  
Nikita V. Chukanov ◽  
Dmitry I. Belakovskiy ◽  
...  

ABSTRACT The new mineral eleomelanite, (K2Pb)Cu4O2(SO4)4, was found in the Arsenatnaya fumarole on the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik Volcano, Kamchatka, Russia. It is associated with euchlorine, fedotovite, wulffite, chalcocyanite, dolerophanite, dravertite, hermannjahnite, alumoklyuchevskite, klyuchevskite, piypite, cryptochalcite, cesiodymite, anglesite, langbeinite, calciolangbeinite, metathénardite, belomarinaite, aphthitalite, krasheninnikovite, steklite, anhydrite, hematite, tenorite, sanidine, sylvite, halite, lammerite, urusovite, and gold. Eleomelanite occurs as interrupted crusts up to 6 mm across and up to 0.3 mm thick consisting of equant, prismatic, or tabular crystals or grains up to 0.3 mm. It is translucent and black. The luster is oleaginous on crystal faces and vitreous on a cleavage surface. Dcalc is 3.790 g/cm3. Eleomelanite is optically biaxial (–), α 1.646(3), β 1.715(6), γ 1.734(6), 2Vmeas. = 60(15)°. The chemical composition (wt.%, electron-microprobe) is K2O 9.62, Rb2O 0.49, Cs2O 0.24, CaO 1.23, CuO 35.28, PbO 19.25, SO3 34.78, total 100.89. The empirical formula calculated based on 18 O apfu is (K1.88Pb0.79Ca0.20Rb0.05Cs0.02)Σ2.94Cu4.07S3.99O18. Eleomelanite is monoclinic, P21/n, a 9.3986(3), b 4.8911(1), c 18.2293(5) Å, β 104.409(3)°, V 811.63(4) Å3, and Z = 2. The strongest reflections of the powder XRD pattern [d,Å(I)(hkl)] are: 7.38(44)(101), 3.699(78)(112), , 3.173(40)(211), 2.915(35)(114), 2.838(35)(204), , and . The crystal structure was solved using single-crystal XRD data, R1 = 4.78%. It is based on heteropolyhedral Cu–S–O chains composed of Cu-centered polyhedra with [4+1+1] Cu2+ coordination and SO4 tetrahedra. Adjacent Cu–S–O chains are connected via chains of (K,Pb)O8 and KO10 polyhedra. Eleomelanite belongs to a novel structure type but has common structural features with klyuchevskite, alumoklyuchevskite, wulffite, parawulffite, and piypite. The name is derived from the Greek ελαιν (eleon), oil, and μλας (melas), black, due to its black color and oleaginous luster on crystal faces that are uncommon for sulfate minerals.


2020 ◽  
Vol 84 (4) ◽  
pp. 616-622
Author(s):  
Igor V. Pekov ◽  
Natalia N. Koshlyakova ◽  
Atali A. Agakhanov ◽  
Natalia V. Zubkova ◽  
Dmitry I. Belakovskiy ◽  
...  

AbstractThe new alluaudite-group mineral badalovite was found in the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. It is associated with hematite, tenorite, cassiterite, johillerite, nickenichite, calciojohillerite, bradaczekite, metathénardite, aphthitalite, langbeinite, calciolangbeinite, sanidine, fluorophlogopite, fluoborite, tilasite, anhydrite, pseudobrookite, sylvite, halite, lammerite, urusovite, ericlaxmanite, arsmirandite, svabite, krasheninnikovite, euchlorine, wulffite and alumoklyuchevskite. Badalovite forms oblique-angled prismatic crystals up to 1 mm × 1 mm × 5 mm, typically combined in groups or crusts up to several hundred cm2 in area. The mineral is transparent, green, grey, yellow or colourless, with vitreous lustre. It is brittle, the Mohs hardness is 3½. Cleavage was not observed, the fracture is uneven. Dcalc is 4.02 g cm–3. Badalovite is optically biaxial (–), α = 1.753(3), β = 1.757(3), γ = 1.758(3) and 2Vmeas. = 50(10)°. Chemical composition (wt.%, electron-microprobe; holotype) is: Na2O 9.23, K2O 0.19, CaO 2.04, MgO 13.78, MnO 0.31, CuO 0.12, ZnO 0.24, Al2O3 0.06, Fe2O3 12.77, TiO2 0.01, SiO2 0.06, P2O5 0.33, V2O5 0.05, As2O5 61.51, SO3 0.02, total 100.72. The empirical formula based on 12 O apfu is Na1.67Ca0.20K0.02Mg1.92Zn0.02Mn0.02Cu0.01Fe3+0.90Al0.01(As3.01P0.03Si0.01)Σ3.05O12. The simplified formula is Na2Mg2Fe3+(AsO4)3. Badalovite is monoclinic, C2/c, a = 11.9034(3), b = 12.7832(2), c = 6.66340(16) Å, β = 112.523(3)°, V = 936.59(4) Å3 and Z = 4. The strongest reflections of the powder XRD pattern [d,Å(I)(hkl)] are: 6.41(38)(020), 5.505(20)(200), 3.577(23)($\bar{1}$31), 3.523(25)(310), 3.211(46)($\bar{1}$12), 2.911(28)($\bar{2}$22, $\bar{3}$12), 2.765(100)(240, 400) and 2.618(26)($\bar{1}$32). The crystal structure was solved from single-crystal XRD data with an R1 of = 2.49%. Badalovite is isostructural with other alluaudite-group minerals. Its simplified crystal chemical formula is A(1)NaA(1)’□A(2) □A(2)’NaM(1)MgM(2)(Mg0.5Fe3+0.5)2(AsO4)3 (□ – vacancy) and the end-member formula is NaNaMg(MgFe3+)(AsO4)3. The mineral is named in honour of the outstanding mineralogist and geochemist Stepan Tigranovich Badalov (1919–2014).


2020 ◽  
Vol 14 (3) ◽  
pp. 177-186
Author(s):  
A. P. Shablinskii ◽  
L. P. Vergasova ◽  
S. K. Filatov ◽  
S. V. Moskaleva ◽  
M. A. Nazarova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document