Dynamical Theory of X-Ray Diffraction for Restricted Beams: II. Diffuse Scattering by a Porous Crystal

2018 ◽  
Vol 127 (2) ◽  
pp. 221-235 ◽  
Author(s):  
V. I. Punegov
1998 ◽  
Vol 5 (3) ◽  
pp. 967-968 ◽  
Author(s):  
Keiichi Hirano ◽  
Atsushi Momose

The phase shift of forward-diffracted X-rays by a perfect crystal is discussed on the basis of the dynamical theory of X-ray diffraction. By means of a triple Laue-case X-ray interferometer, the phase shift of forward-diffracted X-rays by a silicon crystal in the Bragg geometry was investigated.


CrystEngComm ◽  
2021 ◽  
Author(s):  
S. Magalhães ◽  
J. S. Cabaço ◽  
J. P. Araújo ◽  
E. Alves

New software for the simulation and fitting of 2θ–ω scans of symmetric and asymmetric reflections based on the dynamical theory of X-ray diffraction is presented.


IUCrJ ◽  
2016 ◽  
Vol 3 (4) ◽  
pp. 247-258 ◽  
Author(s):  
Tsunetomo Yamada ◽  
Hiroyuki Takakura ◽  
Holger Euchner ◽  
Cesar Pay Gómez ◽  
Alexei Bosak ◽  
...  

The detailed atomic structure of the binary icosahedral (i) ScZn7.33quasicrystal has been investigated by means of high-resolution synchrotron single-crystal X-ray diffraction and absolute scale measurements of diffuse scattering. The average atomic structure has been solved using the measured Bragg intensity data based on a six-dimensional model that is isostructural to the i-YbCd5.7one. The structure is described with a quasiperiodic packing of large Tsai-type rhombic triacontahedron clusters and double Friauf polyhedra (DFP), both resulting from a close-packing of a large (Sc) and a small (Zn) atom. The difference in chemical composition between i-ScZn7.33and i-YbCd5.7was found to lie in the icosahedron shell and the DFP where in i-ScZn7.33chemical disorder occurs on the large atom sites, which induces a significant distortion to the structure units. The intensity in reciprocal space displays a substantial amount of diffuse scattering with anisotropic distribution, located around the strong Bragg peaks, that can be fully interpreted as resulting from phason fluctuations, with a ratio of the phason elastic constantsK2/K1= −0.53,i.e.close to a threefold instability limit. This induces a relatively large perpendicular (or phason) Debye–Waller factor, which explains the vanishing of `high-Qperp' reflections.


2014 ◽  
Vol 70 (6) ◽  
pp. 572-582
Author(s):  
Hsin-Yi Chen ◽  
Mau-Sen Chiu ◽  
Chia-Hung Chu ◽  
Shih-Lin Chang

An algorithm is developed based on the dynamical theory of X-ray diffraction for calculating the profiles of the diffracted beam,i.e.the diagrams of the intensity distributionversus2θ when a crystal is fixed at an angle of its maximum diffracted intensity. Similar to Fraunhofer (far-field) diffraction for a single-slit case, in the proposed algorithm the diffracted beam from one atomic layer excited by X-rays is described by the composition of (N+ 1) coherent point oscillators in the crystal. The amplitude and the initial phase of the electric field for each oscillator can be calculated based on the dynamical theory with given boundary conditions. This algorithm not only gives diffraction profiles but also provides the contribution of the excitation of modes when extremely asymmetric diffraction is involved in the diffraction process. Examples such as extremely asymmetric two-beam surface diffraction and three-beam surface diffraction are presented and discussed in detail.


2019 ◽  
Vol 75 (3) ◽  
pp. 483-488 ◽  
Author(s):  
Kouhei Okitsu ◽  
Yasuhiko Imai ◽  
Yoshitaka Yoda

Non-coplanar 18-beam X-ray pinhole topographs for a silicon crystal were computer simulated by fast Fourier transforming the X-ray rocking amplitudes that were obtained by solving the n-beam (n = 18) Ewald–Laue dynamical theory (E-L&FFT method). They were in good agreement with the experimentally obtained images captured using synchrotron X-rays. From this result and further consideration based on it, it has been clarified that the X-ray diffraction intensities when n X-ray waves are simultaneously strong in the crystal can be computed for any n by using the E-L&FFT method.


Sign in / Sign up

Export Citation Format

Share Document