perfect crystal
Recently Published Documents


TOTAL DOCUMENTS

361
(FIVE YEARS 34)

H-INDEX

29
(FIVE YEARS 1)

2021 ◽  
pp. 26-29
Author(s):  
N.P. Dikiy ◽  
Yu.V. Lyashko ◽  
E.P. Medvedeva ◽  
D.V. Medvedev

The comparison of the catalytic activity of the initial and activated by bremsstrahlung -radiation on a high-current electron accelerator of zirconium dioxide nanoparticles on the nature of the conversion of ethanol. The used -activation parameters contributed to the formation of a more perfect crystal structure of ZrO2 nanoparticles. It was shown that when using -activated ZrO2 nanoparticles as a catalyst, the yield of hydrocarbon products during the conversion of ethanol was several times higher than the yield of the same products in the case of using the initial ZrO2 nanoparticles. The mechanism of such a conversion of ethanol can be associated with the synergism of large ionization losses of Auger electrons and the effect of highly reactive products involved in heterogeneous catalysis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Na Hyun Jo ◽  
Yun Wu ◽  
Thaís V. Trevisan ◽  
Lin-Lin Wang ◽  
Kyungchan Lee ◽  
...  

AbstractElectrons navigate more easily in a background of ordered magnetic moments than around randomly oriented ones. This fundamental quantum mechanical principle is due to their Bloch wave nature and also underlies ballistic electronic motion in a perfect crystal. As a result, a paramagnetic metal that develops ferromagnetic order often experiences a sharp drop in the resistivity. Despite the universality of this phenomenon, a direct observation of the impact of ferromagnetic order on the electronic quasiparticles in a magnetic metal is still lacking. Here we demonstrate that quasiparticles experience a significant enhancement of their lifetime in the ferromagnetic state of the low-density magnetic semimetal EuCd2As2, but this occurs only in selected bands and specific energy ranges. This is a direct consequence of the magnetically induced band splitting and the multi-orbital nature of the material. Our detailed study allows to disentangle different electronic scattering mechanisms due to non-magnetic disorder and magnon exchange. Such high momentum and energy dependence quasiparticle lifetime enhancement can lead to spin selective transport and potential spintronic applications.


Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 427
Author(s):  
George Dedkov

This paper presents the results of calculating the van der Waals friction force (dissipative fluctuation-electromagnetic force) between metallic (Au) plates in relative motion at temperatures close to 1 K. The stopping tangential force arises between moving plates along with the usual Casimir force of attraction, which has been routinely measured with high precision over the past two decades. At room temperatures, the former force is 10 orders of magnitude less than the latter, but at temperatures T<50 K, friction increases sharply. The calculations have been carried out in the framework of the Levin-Polevoi-Rytov fluctuation electromagnetic theory. For metallic plates with perfect crystal lattices and without defects, van der Waals friction force is shown to increase with decreasing temperature as T-4. In the presence of residual resistance ρ0 of the metal, a plateau is formed on the temperature dependence of the friction force at T→0 with a height proportional to ρ0-0.8. Another important finding is the weak force-distance dependence ~a-q (with q<1). The absolute values of the friction forces are achievable for measurements in AFM-based experiments.


2021 ◽  
Vol 1166 ◽  
pp. 33-40
Author(s):  
Pavol Mikula ◽  
Jan Šaroun ◽  
Vasyl Ryukhtin

Focusing 3-axis diffractometer set-up equipped with bent perfect crystal (BPC) monochromator and analyzer offers the sensitivity in determination of strains Dd/d < 10-4 in polycrystalline materials which is about one order of magnitude higher with respect to that of conventional 2-axis neutron scanners. It also offers possibility of line profile analysis for reasonable sample volumes and counting times. In this paper, the feasibility of using the 3-axis set-up even for measurements of rather large bulk polycrystalline samples with an acceptable resolution is presented. As the 3-axis set-up exploits focusing in real and momentum space, by a proper adjustment of the curvature of the analyzer, a high-resolution determination of the lattice changes can also be achieved even on large irradiated gauge volumes, though with a slightly relaxed resolution. It can be successfully exploited namely, in the strain/stress measurements on samples exposed to an external load, e.g. in tension/compression rig, in aging machine etc. In addition to the original performance where the analysis is carried out by rocking the BPC analyzer and the neutron signal registered by a point detector, a new alternative is offered which uses a fixed rocking angle position of the analyzer and the detector signal is registered by a one-dimensional position sensitive detector (PSD). This trick makes possible in some cases the elastic strain/stress measurements considerably faster and thus reduces the drawback of the time consuming step-by-step analysis.


2021 ◽  
Vol 11 (11) ◽  
pp. 5219
Author(s):  
Yosuke Sakurai ◽  
Hirotaka Sato ◽  
Nozomu Adachi ◽  
Satoshi Morooka ◽  
Yoshikazu Todaka ◽  
...  

As a new method for evaluating single crystals and oligocrystals, pulsed neutron Bragg-dip transmission analysis/imaging method is being developed. In this study, a single Bragg-dip profile-fitting analysis method was newly developed, and applied for analyzing detailed inner information in a crystalline grain position-dependently. In the method, the spectrum profile of a single Bragg-dip is analyzed at each position over a grain. As a result, it is expected that changes in crystal orientation, mosaic spread angle and thickness of a perfect crystal can be evaluated from the wavelength, the width and the integrated intensity of the Bragg-dip, respectively. For confirming this effectiveness, the method was applied to experimental data of position-dependent Bragg-dip transmission spectra of a Si-steel plate consisting of oligocrystals. As a result, inner information of multiple crystalline grains could be visualized and evaluated. The small change in crystal orientation in a grain, about 0.4°, could be observed by imaging the Bragg-dip wavelengths. By imaging the Bragg-dip widths, both another grain and mosaic block in a grain were detected. Furthermore, imaging results of the integrated intensities of Bragg-dips were consistent with the results of Bragg-dip width imaging. These small crystallographic changes have not been observed and visualized by previous Bragg-dip analysis methods.


Author(s):  
Marcus H. Mendenhall ◽  
David Black ◽  
Donald Windover ◽  
James P. Cline

The difference in the diffracted intensity of the σ- and π-polarized components of an X-ray beam in powder diffraction has generally been treated according to equations based on dipole scattering, also known as kinematic X-ray scattering. Although this treatment is correct for powders and post-sample analyzers known to be of high mosaicity, it does not apply to systems configured with nearly perfect crystal incident-beam monochromators. Equations are presented for the polarization effect, based on dynamical diffraction theory applied to the monochromator crystal. The intensity of the π component relative to the σ component then becomes approximately proportional to |cos  2θm| rather than to cos22θm, where θm is the Bragg diffraction angle of the monochromator crystal. This changes the predicted intensities of X-ray powder diffraction patterns produced on instruments with incident-beam monochromators, especially in the regions far from 2θ = 90° in the powder pattern. Experimental data, based on well known standard reference materials, are presented, confirming that the dynamical polarization correction is required when a Ge 111 incident-beam monochromator is used. The dynamical correction is absent as an option in the Rietveld analysis codes with which the authors are familiar.


2021 ◽  
Vol 11 (11) ◽  
pp. 4730
Author(s):  
Péter Vancsó ◽  
Alexandre Mayer ◽  
Péter Nemes-Incze ◽  
Géza István Márk

Materials consisting of single- or a few atomic layers have extraordinary physical properties, which are influenced by the structural defects. We present two calculation methods based on wave packet (WP) dynamics, where we compute the scattering of quasiparticle WPs on localized defects. The methods are tested on a graphene sheet: (1) We describe the perfect crystal lattice and the electronic structure by a local atomic pseudopotential, then calculate the Bloch eigenstates and build a localized WP from these states. The defect is represented by a local potential, then we compute the scattering by the time development of the WP. (2) We describe the perfect crystal entirely by the kinetic energy operator, then we calculate the scattering on the local defect described by the potential energy operator. The kinetic energy operator is derived from the dispersion relation, which can be obtained from any electronic structure calculation. We also verify the method by calculating Fourier transform images and comparing them with experimental FFT-LDOS images from STM measurements. These calculation methods make it possible to study the quasiparticle interferences, inter- and intra-valley scattering, anisotropic scattering, etc., caused by defect sites for any 2D material.


Universe ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 84
Author(s):  
Vladimir M. Mostepanenko

This paper provides a review of the complicated problems in Lifshitz theory describing the Casimir force between real material plates composed of metals and dielectrics, including different approaches to their resolution. For both metallic plates with perfect crystal lattices and any dielectric plates, we show that the Casimir entropy calculated in the framework of Lifshitz theory violates the Nernst heat theorem when the well-approved dielectric functions are used in computations. The respective theoretical Casimir forces are excluded by the measurement data of numerous precision experiments. In the literature, this situation has been called the Casimir puzzle and the Casimir conundrum for the cases of metallic and dielectric plates, respectively. This review presents a summary of both the main theoretical and experimental findings on this subject. Next, a discussion is provided of the main approaches proposed in the literature to bring the Lifshitz theory into agreement with the measurement data and with the laws of thermodynamics. Special attention is paid to the recently suggested spatially nonlocal Drude-like response functions, which consider the relaxation properties of conduction electrons, as does the standard Drude model, but lead to the theoretical results being in agreement with both thermodynamics and the measurement data through the alternative response to quantum fluctuations of the mass shell. Further advances and trends in this field of research are discussed.


2021 ◽  
Vol 54 (2) ◽  
Author(s):  
Kenley Pelzer ◽  
Nicholas Schwarz ◽  
Ross Harder

Bragg coherent diffraction imaging (BCDI) provides a powerful tool for obtaining high-resolution structural information from nanocrystalline materials. Here a BCDI sample consisting of a large number of randomly oriented nanoscale crystals is considered. Ideally, only one crystal is oriented to produce a Bragg peak on the detector. However, diffraction from other crystals often produces additional signals on the detector. Before the measured diffraction patterns can be processed into structural images, scientists routinely need to manually identify and remove the `alien' intensities from sources other than the intended crystal. With the development of modern high-coherence storage rings, such as the upgraded Advanced Photon Source (APS), the already slow process of manual preprocessing will be untenable for the large volumes of data that will be produced. An automated method of identifying and deleting alien intensities is proposed. This method exploits the fact that BCDI of a perfect crystal produces diffraction data with inversion symmetry around the Bragg peak. This approach uses the machine learning clustering method DBSCAN to distinguish between diffraction from multiple sources, and then calculates cluster size and inversion symmetry to assess whether clusters of intensity belong to desired data or alien signals. This approach can dramatically reduce the amount of time spent manually processing data, allowing BCDI data processing capabilities to keep pace with the technological advances of fourth-generation synchrotron light sources.


Sign in / Sign up

Export Citation Format

Share Document