scholarly journals Magnetocaloric Effect in Nanosystems Based on Ferromagnets with Different Curie Temperatures

2021 ◽  
Vol 132 (1) ◽  
pp. 79-93
Author(s):  
M. A. Kuznetsov ◽  
A. B. Drovosekov ◽  
A. A. Fraerman

Abstract The magnetocaloric effect in nanosystems based on exchange-coupled ferromagnets with different Curie temperatures is calculated within the mean-field theory. Good agreement between the results of the mean-field theory and the Landau theory, valid near the critical phase transition temperature, is demonstrated for a flat-layered Fe/Gd/Fe structure. We show that a high magnetic cooling efficiency in this system is attainable in principle and prove the validity of the Maxwell relation, enabling an experimental verification of the predictions made. The theory developed for flat-layered structures is generalized to a granular medium.

2019 ◽  
Vol 33 (4) ◽  
pp. 1143-1149
Author(s):  
C. Henchiri ◽  
A. Benali ◽  
T. Mnasri ◽  
M. A. Valente ◽  
E. Dhahri

1982 ◽  
Vol 60 (5) ◽  
pp. 649-653 ◽  
Author(s):  
M. Crişan ◽  
Zs. Gulácsi

The relaxation rate in the nuclear magnetic resonance of the itinerant-electron antiferromagnet was calculated as a function of temperature. A good agreement with the experimental results obtained on CrB2 has been observed. The two band model for the itinerant-electron antiferromagnet for T < TN (TN is the critical temperature) and the mean field theory for the critical region have been used to calculate [Formula: see text] as a function of temperature.


Author(s):  
Mohamed Hsini ◽  
Sadok Zemni

In this paper, we have exploited the mean field theory combined with the Bean-Rodbell model to justify the magnetocaloric effect (MCE) in Nd0.67Ba0.33Mn0.98Fe0.02O3 sample. The simulation of some magnetic properties has been investigated. Modeling magnetization curves have been successfully achieved using this model. The second-order ferromagnetic-paramagnetic (FM-PM) phase transition of our system has been verified through the value of the parameter which controls the transition nature in the Bean-Rodbell model. Theoretical and experimental expressions, which have rated the magnetic entropy change ( − ∆ S M ) under various magnetic fields, have been derived. Theoretical ( − ∆ S M ) curves have been compared to the experimental ones.


2018 ◽  
Vol 31 (11) ◽  
pp. 3717-3722 ◽  
Author(s):  
Mohamed Hsini ◽  
S. khadhraoui ◽  
N. Zaidi ◽  
Ziyad A. Alrowaili

2000 ◽  
Vol 61 (17) ◽  
pp. 11521-11528 ◽  
Author(s):  
Sergio A. Cannas ◽  
A. C. N. de Magalhães ◽  
Francisco A. Tamarit

Sign in / Sign up

Export Citation Format

Share Document