Magnetometers - Fundamentals and Applications of Magnetism
Latest Publications


TOTAL DOCUMENTS

5
(FIVE YEARS 5)

H-INDEX

1
(FIVE YEARS 1)

Published By Intechopen

9781839690952, 9781839690969

Author(s):  
Mohamed Hsini ◽  
Sadok Zemni

In this paper, we have exploited the mean field theory combined with the Bean-Rodbell model to justify the magnetocaloric effect (MCE) in Nd0.67Ba0.33Mn0.98Fe0.02O3 sample. The simulation of some magnetic properties has been investigated. Modeling magnetization curves have been successfully achieved using this model. The second-order ferromagnetic-paramagnetic (FM-PM) phase transition of our system has been verified through the value of the parameter which controls the transition nature in the Bean-Rodbell model. Theoretical and experimental expressions, which have rated the magnetic entropy change ( − ∆ S M ) under various magnetic fields, have been derived. Theoretical ( − ∆ S M ) curves have been compared to the experimental ones.


Author(s):  
Navin Khaneja

A superconducting quantum interference device (SQUID) is the most sensitive magnetic flux sensor currently known. The SQUID can be seen as a flux to voltage converter, and it can generally be used to sense any quantity that can be transduced into a magnetic flux, such as electrical current, voltage, position, etc. The extreme sensitivity of the SQUID is utilized in many different fields of applications, including biomagnetism, materials science, metrology, astronomy and geophysics. The heart of a squid magnetometer is a tunnel junction between two superconductors called a Josephson junction. Understanding the work of these devices rests fundamentally on the BCS theory of superconductivity. In this chapter, we introduce the notion of local potential and confinement in superconductivity. We show how BCS ground state is formed from interaction of wave packets confined to these local potential wells. The starting point of the BCS theory of superconductivity is a phonon-mediated second-order term that describes scattering of electron pair at Fermi surface with momentum k i , − k i and energy 2 ℏ ω i to k j , − k j with energy 2 ℏ ω j . The transition amplitude is M = − d 2 ω d ω i − ω j 2 − ω d 2 , where d is the phonon scattering rate and ω d is the Debye frequency. However, in the presence of offset ω i − ω j , there is also a present transition between states k i , − k i and k j , − k i of sizable amplitude much larger than M . How are we justified in neglecting this term and only retaining M ? In this chapter, we show all this is justified if we consider phonon-mediated transition between wave packets of finite width instead of electron waves. These wave packets are in their local potentials and interact with other wave packets in the same well to form a local BCS state we also call BCS molecule. Finally, we apply the formalism of superconductivity in finite size wave packets to high Tc in cuprates. The copper electrons in narrow d-band live as packets to minimize the repulsion energy. The phonon-mediated coupling between wave packets (of width Debye energy) is proportional to the number of k-states in a packet, which becomes large in narrow d-band (10 times s-band); hence, d-wave Tc is larger (10 times s-wave). At increased doping, packet size increases beyond the Debye energy, and phonon-mediated coupling develops a repulsive part, destroying superconductivity at large doping levels.


Author(s):  
Héctor López Loera

One of the most important problems in arid and semi-arid zones in the Mexican Mesa Central is the one related to the exploration and exploitation of groundwater. It is found at depths over 200 m, and movement is primarily through fractures. This work presents a geophysical methodology, which shows the potential of combining natural and induced methods to locate confined aquifers in fault zones. The study begins by interpreting the aeromagnetic survey, mainly by searching alignments associated with low magnetic anomalies, which are correlated with faults zones, and/or fractures and/or geologic contacts where ferromagnetic minerals have undergone oxidation due to their association with recharged zones. These aeromagnetic alignments are confirmed on land by a ground magnetic survey. Based on these interpretations, electrical methods include sections and vertical electrical sounding are used to verify if the zones are correlated to the underground moisture. If both permeability and moisture are met together, then they considered as zones with a high probability of locating ground water in the Mexican Mesa Central.


Author(s):  
Myeongwon Lee ◽  
Jungbae Yoon ◽  
Donghun Lee

The development of magnetic sensors simultaneously satisfying high magnetic sensitivity and high spatial resolution becomes more important in a wide range of fields including solid-state physics and life science. The nitrogen-vacancy (NV) center in diamond is a promising candidate to realize nanometer-scale magnetometry due to its excellent spin coherence properties, magnetic field sensitivity, atomic-scale size and versatile operation condition. Recent experiments successfully demonstrate the use of NV center in various sensing and imaging applications. In this chapter, we review the basic sensing mechanisms of the NV center and introduce imaging applications based on scanning magnetometry and wide field-of-view optics.


Sign in / Sign up

Export Citation Format

Share Document