Studying the $$\alpha$$-Decay Half-Lives of Nuclei in the Range $${68\leqslant Z\leqslant 118}$$ by Double-Folding and Cluster Formation Formalisms

2021 ◽  
Vol 84 (5) ◽  
pp. 675-682
Author(s):  
B. A. Gheshlagh
2019 ◽  
Vol 28 (06) ◽  
pp. 1950045 ◽  
Author(s):  
B. Nandana ◽  
R. Rahul ◽  
S. Mahadevan

[Formula: see text]-value and half-life of elements in alpha decay chain of [Formula: see text]117, [Formula: see text]117, [Formula: see text]116 and [Formula: see text]116 were calculated using the Nuclear potential generated by double folding procedure and using the WKB method treating the alpha decay as a tunneling problem. The nuclear potential was parameterized using Woods–Saxon potential. Using this approach, the [Formula: see text]-value and half-life of next heaviest element in the alpha decay chain of element [Formula: see text]116 is predicted. It is proposed to use this to predict the [Formula: see text]-value and half-life of other higher elements in different alpha decay chains.


Author(s):  
S. A. Seyyedi

Alpha decay (AD) and spontaneous fission (SF) half-lives of superheavy nuclei [Formula: see text] have been studied within the density-dependent cluster model. The alpha-nucleus potentials were calculated using the double-folding model with the realistic M3Y nucleon–nucleon interaction. To calculate nuclear half-lives, several semi-empirical formulas were used in addition to the Wentzel–Kramers–Brillouin (WKB) approximation. The calculated AD half-lives agree well with the values computed by the analytical formulas of Royer, the semi-empirical formula of Poenaru et al. and the Viola–Seaborg systematic. To identify the mode of decay of these nuclei, the SF half-lives were calculated using the semi-empirical formula given by Xu et al. The results show that among the isotopes studied, isotopes [Formula: see text] can be survived from the SF and have a half-life greater than [Formula: see text][Formula: see text](s). The study predicts [Formula: see text] chains from isotopes [Formula: see text], [Formula: see text] chains from isotopes [Formula: see text], [Formula: see text] chains from isotopes [Formula: see text] and an AD from [Formula: see text]. These isotopes have a half-life long enough to be synthesized in the laboratory. Also, in the decay chains of these isotopes, it is observed that the nuclei [Formula: see text] have higher half-lives than their neighbors. The neutron numbers corresponding to these isotopes are [Formula: see text] indicating the magical or semi-magical behavior of these numbers, which is in good agreement with the research results.


2021 ◽  
pp. 2150033
Author(s):  
S. A. Seyyedi

Alpha-decay half-lives of the even–even superheavy isotopes with proton numbers [Formula: see text] have been calculated within the cluster model. The alpha-daughter potential was constructed by employing the density-dependent double-folding model with a realistic nucleon–nucleon interaction whose exchange part has a finite range approximation. The half-lives were calculated using Wentzel–Kramers–Brillouin (WKB) approximation with the alpha preformation factor. The results have shown that the computed alpha-decay half-lives were in good agreement with their counterpart calculated by different semi-empirical approaches. The obtained results have also shown a negative linear relationship between the logarithm of the preformation factor and the fragmentation potential for the understudy isotopes. Also, the calculated results have shown that isotopes [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] had longer half-lives than their adjacent isotopes, which indicates that the corresponding neutron or proton numbers have a magical or semi-magical properties. Furthermore, we have studied the competition between alpha-decay and spontaneous fission to predict possible decay modes from the even–even isotopes [Formula: see text]. The results revealed that the isotopes [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] had alpha-decay as a predominant mode of decay and the nuclei [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] could not survive from the spontaneous fission. We hope that the theoretical prediction could be helpful for future investigation in this field.


2020 ◽  
Vol 29 (07) ◽  
pp. 2050043
Author(s):  
R. Rahul ◽  
B. Nandana ◽  
S. Mahadevan

The half-life and the [Formula: see text]-value of alpha decay in several super heavy elements are calculated. The nuclear potential is computed using the double-folding method. Using the S-matrix theory, the alpha decay is treated as a scattering problem between alpha particle and the daughter nucleus. Nuclear potential was approximated by the parameterized Woods–Saxon potential. This idea has also been extended to predict the half-life and the [Formula: see text]-value of the heaviest elements of few other alpha chains.


2011 ◽  
Vol 1298 ◽  
Author(s):  
M. Gilbert ◽  
C. Davoisne ◽  
M. C. Stennett ◽  
N. C. Hyatt ◽  
N. Peng ◽  
...  

ABSTRACTA candidate matrix material for inert matrix fuel (IMF), yttria-stabilised zirconia (YSZ) has been doped with Nd3+ as a surrogate for Pu3+. To simulate and assess the effects of fission gas accommodation and alpha decay on the microstructure, samples of (Y0.1425,Nd0.05,Zr0.8075)O1.904 have been irradiated with 2 MeV 36Kr+ ions, at fluences of 1×1014 and 5×1015 cm−2, and 200 keV 4He+ ions at fluences of 1×1014, 5×1015 and 1×1017 cm-2. Analysis by transmission electron microscopy (TEM) of thin sections prepared by focussed ion beam (FIB) milling revealed damage was only observed at the highest 36Kr+ and 4He+ fluences. Monte Carlo simulations using the TRIM code showed that it is only at these fluences that the level of atomic displacements was sufficient to result in observable defect cluster formation within the material.


2019 ◽  
Vol 74 (7) ◽  
pp. 551-560 ◽  
Author(s):  
M. Sayahi ◽  
V. Dehghani ◽  
D. Naderi ◽  
S.A. Alavi

AbstractThe alpha decay half-lives ofZ= 118–121 superheavy nuclei withA≤ 300 are calculated by using the density-dependent nuclear potential in the framework of the WKB method. The Paris and Ried M3Y nucleon-nucleon potentials are used in the calculation of the double-folding potential, which the Paris potential predicts to be the larger value of the half-lives. The obtained half-lives with Paris parameterisation are compared with those using three semi-empirical formulas, namely the improved Sahu formula, the universal decay law for alpha decay, and the formula for both alpha decay and cluster decay. The predicted half-lives with double-folding lie in between the improved Sahu and universal decay law formulas for both alpha and cluster decay. However, it is closer to the universal decay law formula and obeys its trend in all the studied superheavy nuclei.


Sign in / Sign up

Export Citation Format

Share Document