double folding
Recently Published Documents


TOTAL DOCUMENTS

166
(FIVE YEARS 45)

H-INDEX

18
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Vahid Dehghani ◽  
S. A. Alavi ◽  
‪Rohollah Razavinejad ◽  
Asim Soylu ◽  
fahrettin koyuncu

Abstract Adopting different neutron and proton density distributions the cluster decay half-lives have been investigated using double-folding potentials with constant and nuclear asymmetry dependent sets of the parameters of nuclear densities. Two adopted asymmetry dependent sets of the parameters are fitted based on the microscopic calculations and calculated based on the neutron skin/halo-type nuclei assumption and employing experimental rms charge radii. The bulk agreement between theory and experiment has been obtained for entire sets of parameters using calculated cluster preformation probability. The very little differences between skin and halo-type assumption have been observed. However, the notable role of the asymmetry parameter has been seen in relatively large differences between the skin and skin-type with zero thickness.


Author(s):  
Yoshiharu Hirabayashi ◽  
Shigeo Ohkubo

Abstract We show the existence of the α+α * cluster structure at the highly excited energy around Ex =20 MeV in 8Be for the first time in the coupled channels calculations. An extended double folding model derived using a realistic precise cluster wave function with a well-developed N+3N cluster structure for the first excited state of 4He was employed. The calculation reproduces the experimental phase shifts in α+α scattering up to Ec.m. =21 MeV well. The result shows that the well-developed core-excited α+α * structure appears as resonances for L=0 and 2 near the α+α * threshold which correspond to the experimental states at Ex =20.20MeV and Ex =22.24MeV in 8Be.


2021 ◽  
Author(s):  
Zhong-Ning Chen ◽  
Ya-Zi Huang ◽  
Jin-Yun Wang ◽  
Zhu Jiao ◽  
Pei Xie

Abstract Through elaborate ligand design to create knotted structures with specific topologies is a major challenge for chemists. In this work, the self-assembly between U-shape 3,6-di-tert-butyl-1,8-diethynyl-9H-carbazole (H2L) and Au+ through gold(I)-bis(acetylide) linkages under π-bonded Cu+ template gives rise to complex 1 with two interlocked metallostrands as well as complexes 3 (n = 3) and 4 (n = 4) with [(AuL)n]n- metallostrands showing trefoil knot topology. Upon incorporating two [Au(dppb)Au]2+ (dppb = Ph2P(CH2)4PPh2) moieties through bis(Au-acetylide) coordination bonds, the interlocked structure (1) is fully closed to form a figure-eight knotted structure in complex 2. The folding and threading of metallocyclic strings are directed by Cu+, which are π-ligated to two or three acetylides to generate double-folding or triple-folding cross points. Complexes 1-4 show intense phosphorescence in both solutions and solid states at ambient temperature, originating from admixture of metal centered 3[d®p/s], 3IL (intraligand), and 3[p (L) ® s/p (Au/Cu)] 3LMCT triplet states.


2021 ◽  
pp. 2150176
Author(s):  
M. Aygun

The elastic scattering cross-sections of [Formula: see text]Si projectile by [Formula: see text]Al, [Formula: see text]Si, [Formula: see text]Ni, [Formula: see text]Ni and [Formula: see text]Pb targets are analyzed using the double folding model based on the effective M3Y interaction which is known as the most popular density independent form. In the calculations of the double folding model, 16 different density distributions of [Formula: see text]Si nucleus are examined. A very good agreement between experimental data and theoretical results is obtained, and also the literature results support our results. In addition, dependence on incident energy, target atomic number and target mass number of the imaginary potential depth is studied, and new and global equations are proposed.


2021 ◽  
pp. 1-25
Author(s):  
L. Tiegang ◽  
C. Guoguang ◽  
L. Shuai

ABSTRACT A folding wing is a tactical missile launching device that needs to be miniaturised to facilitate storage, transportation, and launching; save missile and transportation space; and improve the combat capability of weapon systems. This study investigates the aeroelastic characteristics of the secondary longitudinal folding wing during the unfolding process. First, the Lagrange equation is used to establish the structural dynamics model of the folding wing, the kinematics characteristics during the deformation process are analysed, and the unfolding movement of the folding wing is obtained using the dynamic equations in the process. Then, the generalised unsteady aerodynamic force is calculated using the dipole grid method, and the multi-body dynamics equation of the folding wing is obtained. The initial angular velocity required for the deployment of the folding wing is analysed through structural model simulation, and the influence of the initial angular velocity on the opening process is studied. Finally, aeroelastic flutter analysis is performed on the folding wing, and the physical model of the folding wing verified experimentally. Results show that the type of aeroelastic response is sensitive to the initial conditions and the way the folding wing opens.


Sign in / Sign up

Export Citation Format

Share Document